scholarly journals Designing a Graphene Coating-Based Supercapacitor with Lithium Ion Electrolyte: An Experimental and Computational Study via Multiscale Modeling

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2899
Author(s):  
Joseph Paul Baboo ◽  
Shumaila Babar ◽  
Dhaval Kale ◽  
Constantina Lekakou ◽  
Giuliano M. Laudone

Graphene electrodes are investigated for electrochemical double layer capacitors (EDLCs) with lithium ion electrolyte, the focus being the effect of the pore size distribution (PSD) of electrode with respect to the solvated and desolvated electrolyte ions. Two graphene electrode coatings are examined: a low specific surface area (SSA) xGNP-750 coating and a high SSA coating based on a-MWGO (activated microwave expanded graphene oxide). The study comprises an experimental and a computer modeling part. The experimental part includes fabrication, material characterization and electrochemical testing of an EDLC with xGNP-750 coating electrodes and electrolyte 1M LiPF6 in EC:DMC. The computational part includes simulations of the galvanostatic charge-discharge of each EDLC type, based on a continuum ion transport model taking into account the PSD of electrodes, as well as molecular modeling to determine the parameters of the solvated and desolvated electrolyte ions and their adsorption energies with each type of electrode pore surface material. Predictions, in agreement with the experimental data, yield a specific electrode capacitance of 110 F g−1 for xGNP-750 coating electrodes in electrolyte 1M LiPF6 in EC:DMC, which is three times higher than that of the high SSA a-MWGO coating electrodes in the same lithium ion electrolyte.

Author(s):  
Foivos Markoulidis ◽  
Adam Dawe ◽  
Constantina Lekakou

AbstractAlthough typical electrochemical double-layer capacitors (EDLCs) operate with aqueous or lithium-free organic electrolytes optimized for activated carbon electrodes, there is interest in EDLCs with lithium-ion electrolyte for applications of lithium ion capacitors and hybridized battery-supercapacitor devices. We present an experimental study of symmetric EDLCs with electrolyte 1 M LiPF6 in EC:EMC 50:50 v/v and electrode coatings with 5 wt% SBR or PEDOT:PSS binder at 5 or 10 wt% concentration, where for the PEDOT:PSS containing electrodes pseudocapacitance effects were investigated in the lithium-ion electrolyte. Two different electrode coating fabrication methods were explored, doctor blade coating and spraying. It was found that EDLCs with electrodes with either binder had a stability window of 0–2 V in the lithium-ion electrolyte. EDLCs with electrodes with 10 wt% PEDOT:PSS binder yielded cyclic voltammograms with pseudocapacitance features indicating surface redox pseudocapacitance in the doctor blade coated electrodes, and intercalation and redox phenomena for the sprayed electrodes. The highest energy density in discharge was exhibited by the EDLC with doctor blade-coated electrodes and 10 wt% PEDOT:PSS binder, which combined good capacitive features with surface redox pseudocapacitance. In general, EDLCs with sprayed electrodes reached higher power density than doctor blade coated electrodes. Graphic abstract


2011 ◽  
Vol 675-677 ◽  
pp. 65-68 ◽  
Author(s):  
Zi Lei Liang ◽  
Chong Kuan Cheng ◽  
Ji Bo Liu ◽  
Guo Min Mi

The real times Electrochemical Impedance Spectroscopy (EIS) analysis which corresponds to the charge and discharge process was reported in order to evaluate the relationships between impedance and potential for new high specific energy electrochemical double-layer capacitors (EDLC). Also the Niquist plots were presented and the impedance of the EDLC was discussed in terms of complex capacitance. It was found that the high frequency impedance changed with its potential in charging or discharging process, the medium frequency impedance Rct belonged to the resistance of ions diffusion into micro pore or the inner of electrode material decreased with increasing charge voltage and had a certain capacitance of about 1F.


2021 ◽  
pp. 53-77
Author(s):  
Aleksandr E. Kolosov ◽  
Volodymyr Y. Izotov ◽  
Elena P. Kolosova ◽  
Volodymyr V. Vanin ◽  
Anish Khan

Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 229 ◽  
Author(s):  
Jacob D. Huffstutler ◽  
Milinda Wasala ◽  
Julianna Richie ◽  
John Barron ◽  
Andrew Winchester ◽  
...  

There are several advantages to developing electrochemical double-layer capacitors (EDLC) or supercapacitors with high specific energy densities, for example, these can be used in applications related to quality power generation, voltage stabilization, and frequency regulation. In this regard, ionic liquids capable of providing a higher voltage window of operations compared to an aqueous and/or polymer electrolyte can significantly enhance the specific energy densities of EDLCs. Here we demonstrate that EDLCs fabricated using ionic liquid 1-butyl-1-methylpyrrolidinium tris (pentafluoroethyl) trifluorophosphate (BMP-FAP) as an electrolyte and few layer liquid-phase exfoliated graphene as electrodes show remarkable performance compared to EDLC devices fabricated with aqueous potassium hydroxide (6M) as well as widely used ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6). We found that graphene EDLC’s with BMP-FAP as an electrolyte possess a high specific energy density of ≈25 Wh/kg along with specific capacitance values as high as 200 F/g and having an operating voltage windows of >5 volts with a rapid charge transfer response. These findings strongly indicate the suitability of BMP-FAP as a good choice of electrolyte for high energy density EDLC devices.


Sign in / Sign up

Export Citation Format

Share Document