realized heritability
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 22)

H-INDEX

25
(FIVE YEARS 3)

Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 794
Author(s):  
Joseph Onwusemu Disi ◽  
Ashfaq A. Sial

Drosophila suzukii (Matsumura) is one of the most economically important pests of soft-skinned fruits worldwide. Repeated insecticide applications commonly used to prevent fruit infestations increase the risk of resistance development in D. suzukii. Assessment of resistance risk in D. suzukii using artificial selection can be valuable in developing proactive resistance management strategies to retain susceptibility in the field populations. Here, we artificially selected a colony of field-collected D. suzukii for resistance against spinosad and malathion. A quantitative genetic approach was then used to estimate realized heritability (h2) of resistance and predict the rates of resistance development. After 10 and 11 generations of selection, resistance to spinosad and malathion in D. suzukii females significantly increased by 7.55- and 2.23-fold, respectively. Based on the predicted rates of resistance development, assuming h2 = 0.14 (mean h2 of spinosad resistance in this study) and 90% of population was killed at each generation, 10-fold increase in LC50 of D. suzukii females would be expected in nine generations for spinosad. However, 10-fold increase in LC50 of D. suzukii females for malathion would be expected in 37 generations, assuming h2 = 0.08 (mean h2 of malathion resistance) and 90% of population was killed at each generation. These results indicate that the risk of resistance in D. suzukii populations exists against both spinosad and malathion. However, resistance would develop faster against spinosad as compared to malathion. Thus, resistance management strategies should be implemented proactively to maintain the effectiveness of these insecticides to control D. suzukii.


2021 ◽  
Author(s):  
Reginald D Smith

Gene-environment interaction is often described by linear phenotypic plasticity but has recently also been expressed as function of the product of genotype and environmental variables. While this model can be fitted in a multiple regression scenario, little has been written on the distribution of the product of breeding values and environment, GE, its expected moments, and the theoretical impact on phenotypic selection. Here we will explore these topics introducing the distribution for GE, its mean and variance, and its expected impact of lowering realized heritability due to is increasing the phenotypic variance.


Author(s):  
Naeem Abbas ◽  
Muhammad Abubakar ◽  
Muhammad Waqar Hassan ◽  
Sarfraz Ali Shad ◽  
Abdulwahab M Hafez

Abstract Flonicamid is a chordotonal modulator and novel systemic insecticide that has been used frequently for controlling a broad range of insect pests. The risk of flonicamid resistance was assessed through laboratory selection and determining inheritance pattern and cross-resistance potential to five insecticides in house fly, Musca domestica L. Very low to high flonicamid resistance in M. domestica populations was found compared with the susceptible strain (SS). A flonicamid-selected (Flonica-RS) M. domestica strain developed 57.73-fold resistance to flonicamid screened for 20 generations compared with the SS. Overlapping 95% fiducial limits of LC50 of the F1 and F1ǂ, and dominance values (0.87 for F1 and 0.92 for F1ǂ) revealed an autosomal and incomplete dominant flonicamid resistance. The monogenic model of resistance inheritance suggested a polygenic flonicamid resistance. The Flonica-RS strain displayed negative cross-resistance between flonicamid and sulfoxaflor (0.10-fold) or clothianidin (0.50-fold), and very low cross-resistance between flonicamid and flubendiamide (4.71-fold), spinetoram (4.68-fold), or thiamethoxam (2.02-fold) in comparison with the field population. The estimated realized heritability (h2) value of flonicamid resistance was 0.02. With selection mortality 40–90%, the generations required for a 10-fold increase in LC50 of flonicamid were 94–258 at h2 (0.02) and slope (3.29). Flonicamid resistance was inherited as autosomal, incomplete dominant, and polygenic in the Flonica-RS. Negative or very low cross-resistance between flonicamid and sulfoxaflor, clothianidin, flubendiamide, spinetoram, and thiamethoxam means that these insecticides can be used as alternatives for controlling M. domestica. These data can be useful in devising the management for M. domestica.


Sign in / Sign up

Export Citation Format

Share Document