gravity variation
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 6)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Kazuhiro Naganawa ◽  
Takahito Kazama ◽  
Yoichi Fukuda ◽  
Satoshi Miura ◽  
Hideki Hayakawa ◽  
...  

Abstract In Southeast Alaska (SE-AK), rapid ground uplift of up to 3 cm/yr has been observed associated with post-Little Ice Age glacial isostatic adjustment (GIA). Geodetic techniques such as global navigation satellite system (GNSS) and absolute gravimetry have been applied to monitor GIA since the last 1990s. Rheological parameters for SE-AK were determined from dense GNSS array data in earlier studies. However, the absolute gravity rate of change observed in SE-AK was inconsistent with the ground uplift rate, mainly because few gravity measurements from 2006 to 2008 resulted in imprecise gravity variation rates. Therefore, we collected absolute gravity data at six gravity points in SE-AK every June in 2012, 2013, and 2015, and updated the gravity variation rate by reprocessing the absolute gravity data collected from 2006 to 2015. We found that the updated gravity variation rate at the six gravity points ranged from −2.05 to −4.40 μGal/yr, and its standard deviation was smaller than that reported in the earlier study by up to 88 %. We also estimated the rheological parameters to explain the updated gravity variation rate, and their optimal values were determined to be 55 km and 1.2 × 10^19 Pa s for lithospheric thickness and upper mantle viscosity, respectively. These optimal values are consistent with those independently obtained from GNSS observations, and this fact indicates that absolute gravimetry can be one of the most effective methods in determining sub-surface structural parameters associated with GIA accurately. Moreover, we utilized the gravity variation rates for estimating the ratio of gravity variation to vertical ground deformation at the six gravity points in SE-AK. The viscous ratio values were obtained as −0.168 and −0.171 μGal/mm from the observed data and the calculated result, respectively. These ratios are greater (in absolute) than those for other GIA regions (−0.15 to −0.16 μGal/mm in Antarctica and Fennoscandia) because glaciers in SE-AK have melted more recently than in other regions.


2021 ◽  
Vol 13 (5) ◽  
pp. 918
Author(s):  
Ludger Timmen ◽  
Christian Gerlach ◽  
Till Rehm ◽  
Christof Völksen ◽  
Christian Voigt

In 2004, first absolute gravity (AG) measurements were performed on the top of Mt. Zugspitze (2 sites) and at the foot (1 site) and top (1 site) of Mt. Wank. Mt. Wank (summit height 1780 m) and Mt. Zugspitze (2960 m) are about 15 km apart from each other and belong geologically to different parts of the Northern Limestone Alps. Bridging a time span of 15 years, the deduced gravity variations for Zugspitze are in the order of 0.30 μm/s² with a standard uncertainty of 0.04 μm/s². The Wank stations (foot and top) show no significant gravity variation. The vertical stability of Wank summit is also confirmed by results of continuous GNSS recordings. Because an Alpine mountain uplift of 1 or 2 mm/yr cannot explain the obtained gravity decline at Zugspitze, the dominating geophysical contributions are assumed to be due to the diminishing glaciers in the vicinity. The modelled gravity trend caused by glacier retreat between epochs 1999 and 2018 amounts to 0.012 μm/s²/yr at both Zugspitze AG sites. This explains more than half of the observed gravity decrease. Long-term variations on inter-annual and climate-relevant decadal scale will be investigated in the future using as supplement superconducting gravimetry (installed in 2019) and GNSS equipment (since 2018).


Author(s):  
Ludger Timmen ◽  
Christian Gerlach ◽  
Till Rehm ◽  
Christof Völksen ◽  
Christian Voigt

In 2004, first absolute gravity (AG) measurements were performed on the mountain tops of Mt. Zugspitze (2 sites) and Mt. Wank (1 site), and at the Wank foot (1 site). Wank (summit height 1780 m) and Zugspitze (2960 m) are about 20 km apart from each other and belong geologically to different parts of the Northern Limestone Alps. Bridging a time span of 15 years, the deduced gravity variations for Zugspitze are in the order of 0.30 μm/s² with a standard uncertainty of 0.04 μm/s². The Wank stations (foot and top) show no significant gravity variation. The vertical stability of Wank summit is also confirmed by results of continuous GNSS recordings. Because an Alpine mountain uplift of 1 or 2 mm/yr cannot explain the obtained gravity decline at Zugspitze, the dominating geophysical contributions are assumed to be due to the diminishing glaciers in the vicinity. The modelled gravity trend caused by glacier retreat between epochs 1999 and 2018 amounts to -0.012 μm/s²/yr at both Zugspitze AG sites. This explains more than half of the observed gravity decrease. Long-term variations on inter-annual and climate-relevant decadal scale will be investigated in the future using as a supplement superconducting gravimetry (installed in 2019) and GNSS equipment (since 2018).


2020 ◽  
Vol 17 (6) ◽  
pp. 785-793
Author(s):  
Dhananjay Yadav

Purpose The purpose of this study is to examine the influence of rotation and varying gravitational strength on the onset of thermal convection in a porous medium layer numerically. The porous layer is acted to uniform rotation and inconsistent downward gravitational field which changing with depth from the layer. The authors presented three categories of gravitational strength deviancy, namely, linear, parabolic and exponential. Design/methodology/approach The higher-terms Galerkin weighted residual procedure is applied to get the eigenvalue of the problem. Findings The results illustrate that both rotation parameter and gravity variation parameter suspend the arrival of convection. The measurement of the convection cells decreases on enhancing the rotation parameter and gravity variation parameter. Originality/value It is also found that the scheme is more stable for category exponential, whereas it is more unstable for category parabolic.


2017 ◽  
Vol 8 (2) ◽  
pp. 136-140
Author(s):  
Hongtao Hao ◽  
Lelin Xing ◽  
Minzhang Hu ◽  
Yufei Han ◽  
Hui Li
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document