hermatypic coral
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 12)

H-INDEX

26
(FIVE YEARS 2)

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11652
Author(s):  
Hung-Kai Chen ◽  
Sabrina L. Rosset ◽  
Li-Hsueh Wang ◽  
Chii-Shiarng Chen

Intracellular lipid body (LB) biogenesis depends on the symbiosis between coral hosts and their Symbiodinaceae. Therefore, understanding the mechanism(s) behind LB biosynthesis in corals can portentially elucide the drivers of cellular regulation during endosymbiosis. This study assessed LB formation in the gastrodermal tissue layer of the hermatypic coral Euphyllia glabrescens. Diel rhythmicity in LB size and distribution was observed; solar irradiation onset at sunrise initiated an increase in LB formation, which continued throughout the day and peaked after sunset at 18:00. The LBs migrated from the area near the mesoglea to the gastrodermal cell border near the coelenteron. Micro-LB biogenesis occurred in the endoplasmic reticulum (ER) of the host gastrodermal cells. A transcriptomic analysis of genes related to lipogenesis indicated that binding immunoglobulin protein (BiP) plays a key role in metabolic signaling pathways. The diel rhythmicity of LB biogenesis was correlated with ER-localized BiP expression. BiP expression peaked during the period with the largest increase in LB formation, thereby indicating that the chaperoning reaction of abnormal protein folding inside the host ER is likely involved in LB biosynthesis. These findings suggest that the host ER, central to LB formation, potentially facilitates the regulation of endosymbiosis between coral hosts and Symbiodiniaceae.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xinqing Zheng ◽  
Chenying Wang ◽  
Huaxia Sheng ◽  
Gaofeng Niu ◽  
Xu Dong ◽  
...  

The supply of metabolites from symbionts to scleractinian corals is crucial to coral health. Members of the Symbiodiniaceae can enhance coral calcification by providing photosynthetically fixed carbon (PFC) and energy, whereas dinitrogen (N2)-fixing bacteria can provide additional nutrients such as diazotrophically-derived nitrogen (DDN) that sustain coral productivity especially when alternative external nitrogen sources are scarce. How these mutualistic associations benefit corals in the future acidifying ocean is not well understood. In this study, we investigated the possible effects of ocean acidification (OA; pHs 7.7 and 7.4 vs. 8.1) on calcification in the hermatypic coral Galaxea fascicularis with respect to PFC and DDN assimilation. Our measurements based on isotopic tracing showed no significant differences in the assimilation of PFC among different pH treatments, but the assimilation of DDN decreased significantly after 28 days of stress at pH 7.4. The decreased DDN assimilation suggests a nitrogenous nutrient deficiency in the coral holotiont, potentially leading to reduced coral calcification and resilience to bleaching and other stressful events. This contrasting impact of OA on carbon and N flux demonstrates the flexibility of G. fascicularis in coping with OA, apparently by sustaining a largely undamaged photosystem at the expense of N2 fixation machinery, which competes with coral calcification for energy from photosynthesis. These findings shed new light on the critically important but more vulnerable N cycling in hospite, and on the trade-off between coral hosts and symbionts in response to future climate change.


2021 ◽  
Vol 170 ◽  
pp. 102010
Author(s):  
Joicye Hernández-Zulueta ◽  
Leopoldo Díaz-Pérez ◽  
Cristian Moisés Galván-Villa ◽  
Manuel Ayón-Parente ◽  
Pastora Gómez-Petersen ◽  
...  

2020 ◽  
Vol 154 ◽  
pp. 111008 ◽  
Author(s):  
Ichiro Takeuchi ◽  
Daisuke Takaichi ◽  
Masakazu Katsumata ◽  
Hiroshi Ishibashi

Author(s):  
Fuyu Li ◽  
Dandan Chen ◽  
Yuanchao Li ◽  
Shiyao Li ◽  
Jing Hou ◽  
...  

2019 ◽  
Vol 286 (1896) ◽  
pp. 20182444 ◽  
Author(s):  
Isabelle Taubner ◽  
Marian Y. Hu ◽  
Anton Eisenhauer ◽  
Markus Bleich

Light has been demonstrated to enhance calcification rates in hermatypic coral species. To date, it remains unresolved whether calcifying epithelia change their ion transport activity during illumination, and whether such a process is mediated by the endosymbiotic algae or can be controlled by the coral host itself. Using a modified Ussing chamber in combination with H + sensitive microelectrode measurements, the present work demonstrates that light triggers the generation of a skeleton positive potential of up to 0.9 mV in the hermatypic coral Stylophora pistillata . This potential is generated by a net flux of cations towards the skeleton and reaches its maximum at blue (450 nm) light. The effects of pharmacological inhibitors targeting photosynthesis 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and anion transport 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) were investigated by pH microelectrode measurements in coral tissues demonstrating a rapid decrease in tissue pH under illumination. However, these inhibitors showed no effect on the electrophysiological light response of the coral host. By contrast, metabolic inhibition by cyanide and deoxyglucose reversibly inhibited the light-induced cation flux towards the skeleton. These results suggest that ion transport across coral epithelia is directly triggered by blue light, independent of photosynthetic activity of algal endosymbionts. Measurements of this very specific and quantifiable physiological response can provide parameters to identify photoreception mechanisms and will help to broaden our understanding of the mechanistic link between light stimulation and epithelial ion transport, potentially relevant for calcification in hermatypic corals.


Sign in / Sign up

Export Citation Format

Share Document