scoring matrix
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 41)

H-INDEX

17
(FIVE YEARS 3)

F1000Research ◽  
2022 ◽  
Vol 11 ◽  
pp. 33
Author(s):  
Alexandr Boytsov ◽  
Sergey Abramov ◽  
Vsevolod J. Makeev ◽  
Ivan V. Kulakovskiy

The commonly accepted model to quantify the specificity of transcription factor binding to DNA is the position weight matrix, also called the position-specific scoring matrix. Position weight matrices are used in thousands of projects and computational tools in regulatory genomics, including prediction of the regulatory potential of single-nucleotide variants. Yet, recently Yan et al. presented new experimental method for analysis of regulatory variants and, based on its results, reported that "the position weight matrices of most transcription factors lack sufficient predictive power". Here, we re-analyze the rich experimental dataset obtained by Yan et al. and show that appropriately selected position weight matrices in fact can successfully quantify transcription factor binding to alternative alleles.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yue Gong ◽  
Benzhi Dong ◽  
Zixiao Zhang ◽  
Yixiao Zhai ◽  
Bo Gao ◽  
...  

Vesicular transport proteins are related to many human diseases, and they threaten human health when they undergo pathological changes. Protein function prediction has been one of the most in-depth topics in bioinformatics. In this work, we developed a useful tool to identify vesicular transport proteins. Our strategy is to extract transition probability composition, autocovariance transformation and other information from the position-specific scoring matrix as feature vectors. EditedNearesNeighbours (ENN) is used to address the imbalance of the data set, and the Max-Relevance-Max-Distance (MRMD) algorithm is adopted to reduce the dimension of the feature vector. We used 5-fold cross-validation and independent test sets to evaluate our model. On the test set, VTP-Identifier presented a higher performance compared with GRU. The accuracy, Matthew’s correlation coefficient (MCC) and area under the ROC curve (AUC) were 83.6%, 0.531 and 0.873, respectively.


2021 ◽  
Vol 12 ◽  
Author(s):  
Minli Tang ◽  
Longxin Wu ◽  
Xinyu Yu ◽  
Zhaoqi Chu ◽  
Shuting Jin ◽  
...  

Proteins are the basic substances that undertake human life activities, and they often perform their biological functions through interactions with other biological macromolecules, such as cell transmission and signal transduction. Predicting the interaction sites between proteins can deepen the understanding of the principle of protein interactions, but traditional experimental methods are time-consuming and labor-intensive. In this study, a new hierarchical attention network structure, named HANPPIS, by adding six effective features of protein sequence, position-specific scoring matrix (PSSM), secondary structure, pre-training vector, hydrophilic, and amino acid position, is proposed to predict protein–protein interaction (PPI) sites. The experiment proved that our model has obtained very effective results, which was better than the existing advanced calculation methods. More importantly, we used the double-layer attention mechanism to improve the interpretability of the model and to a certain extent solved the problem of the “black box” of deep neural networks, which can be used as a reference for location positioning on the biological level.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Tongyan Li ◽  
Yingxiang Li ◽  
Chen Yi-Ping Phoebe

Current data has the characteristics of complexity and low information density, which can be called the information sparse data. However, a large amount of data makes it difficult to analyse sparse data with traditional collaborative filtering recommendation algorithms, which may lead to low accuracy. Meanwhile, the complexity of data means that the recommended environment is affected by multiple dimensional factors. In order to solve these problems efficiently, our paper proposes a multidimensional collaborative filtering algorithm based on improved item rating prediction. The algorithm considers a variety of factors that affect user ratings; then, it uses the penalty to account for users’ popularity to calculate the degree of similarity between users and cross-iterative bi-clustering for the user scoring matrix to take into account changes in user’s preferences and improves on the traditional item rating prediction algorithm, which considers user ratings according to multidimensional factors. In this algorithm, the introduction of systematic error factors based on statistical learning improves the accuracy of rating prediction, and the multidimensional method can solve data sparsity problems, enabling the strongest relevant dimension influencing factors with association rules to be found. The experiment results show that the proposed algorithm has the advantages of smaller recommendation error and higher recommendation accuracy.


2021 ◽  
Vol 13 (1) ◽  
pp. 98-105
Author(s):  
Aqsa Yousaf ◽  
Tahira Shehzadi ◽  
Aqeel Farooq ◽  
Komal Ilyas

Abstract Adenosine triphosphate (ATP) is an energy compound present in living organisms and is required by living cells for performing operations such as replication, molecules transportation, chemical synthesis, etc. ATP connects with living cells through specialized sites called ATP-sites. ATP-sites are present in various proteins of a living cell. The life span of a cell can be controlled by controlling ATP compounds and without the provision of energy to ATP compounds, cells cannot survive. Countless diseases treatment (such as cancer, diabetes) can be possible once protein active sites are predicted. Considering the need for an algorithm that predicts ATP-sites with higher accuracy and effectiveness, this research work predicts protein ATP sites in a very novel way. Till now Position-specific scoring matrix (PSSM) along with many physicochemical properties have been used as features with deep neural networks in order to create a model that predicts the ATP-sites. To overcome this problem of complex computation, this exertion proposes k-mer feature vectors with simple machine learning (ML) models to attain the same or even better performance with less computation required. Using 2-mer as feature vectors, this research work trained and tested five different models including KNN, Conv1D, XGBoost, SVM and Random Forest. SVM gave the best performance on k-mer features. The accuracy of the created model is 96%, MCC 90% and ROC-AUC is 99%, which are the same or even better in some aspects than the state-of-the-art results. The state-of-the-art results have an accuracy of 97%, MCC 78% and ROC-AUC is 92%. One of the benefits of the created model is that it is much simpler and more accurate.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0255076
Author(s):  
Teng-Ruei Chen ◽  
Sheng-Hung Juan ◽  
Yu-Wei Huang ◽  
Yen-Cheng Lin ◽  
Wei-Cheng Lo

Protein secondary structure prediction (SSP) has a variety of applications; however, there has been relatively limited improvement in accuracy for years. With a vision of moving forward all related fields, we aimed to make a fundamental advance in SSP. There have been many admirable efforts made to improve the machine learning algorithm for SSP. This work thus took a step back by manipulating the input features. A secondary structure element-based position-specific scoring matrix (SSE-PSSM) is proposed, based on which a new set of machine learning features can be established. The feasibility of this new PSSM was evaluated by rigid independent tests with training and testing datasets sharing <25% sequence identities. In all experiments, the proposed PSSM outperformed the traditional amino acid PSSM. This new PSSM can be easily combined with the amino acid PSSM, and the improvement in accuracy was remarkable. Preliminary tests made by combining the SSE-PSSM and well-known SSP methods showed 2.0% and 5.2% average improvements in three- and eight-state SSP accuracies, respectively. If this PSSM can be integrated into state-of-the-art SSP methods, the overall accuracy of SSP may break the current restriction and eventually bring benefit to all research and applications where secondary structure prediction plays a vital role during development. To facilitate the application and integration of the SSE-PSSM with modern SSP methods, we have established a web server and standalone programs for generating SSE-PSSM available at http://10.life.nctu.edu.tw/SSE-PSSM.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jie Pan ◽  
Li-Ping Li ◽  
Chang-Qing Yu ◽  
Zhu-Hong You ◽  
Zhong-Hao Ren ◽  
...  

Protein-protein interactions (PPIs) in plants are crucial for understanding biological processes. Although high-throughput techniques produced valuable information to identify PPIs in plants, they are usually expensive, inefficient, and extremely time-consuming. Hence, there is an urgent need to develop novel computational methods to predict PPIs in plants. In this article, we proposed a novel approach to predict PPIs in plants only using the information of protein sequences. Specifically, plants’ protein sequences are first converted as position-specific scoring matrix (PSSM); then, the fast Walsh–Hadamard transform (FWHT) algorithm is used to extract feature vectors from PSSM to obtain evolutionary information of plant proteins. Lastly, the rotation forest (RF) classifier is trained for prediction and produced a series of evaluation results. In this work, we named this approach FWHT-RF because FWHT and RF are used for feature extraction and classification, respectively. When applying FWHT-RF on three plants’ PPI datasets Maize, Rice, and Arabidopsis thaliana (Arabidopsis), the average accuracies of FWHT-RF using 5-fold cross validation were achieved as high as 95.20%, 94.42%, and 83.85%, respectively. To further evaluate the predictive power of FWHT-RF, we compared it with the state-of-art support vector machine (SVM) and K-nearest neighbor (KNN) classifier in different aspects. The experimental results demonstrated that FWHT-RF can be a useful supplementary method to predict potential PPIs in plants.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yu Wan ◽  
Zhuo Wang ◽  
Tzong-Yi Lee

Abstract Background Cancer is one of the major causes of death worldwide. To treat cancer, the use of anticancer peptides (ACPs) has attracted increased attention in recent years. ACPs are a unique group of small molecules that can target and kill cancer cells fast and directly. However, identifying ACPs by wet-lab experiments is time-consuming and labor-intensive. Therefore, it is significant to develop computational tools for ACPs prediction. Though some ACP prediction tools have been developed recently, their performances are not well enough and most of them do not offer a function to distinguish ACPs from antimicrobial peptides (AMPs). Considering the fact that a growing number of studies have shown that some AMPs exhibit anticancer function, this work tries to build a model for distinguishing AMPs from ACPs in addition to a model that predicts ACPs from whole peptides. Results This study chooses amino acid composition, N5C5, k-space, position-specific scoring matrix (PSSM) as features, and analyzes them by machine learning methods, including support vector machine (SVM) and sequential minimal optimization (SMO) to build a model (model 2) for distinguishing ACPs from whole peptides. Another model (model 1) that distinguishes ACPs from AMPs is also developed. Comparing to previous models, models developed in this research show better performance (accuracy: 85.5% for model 1 and 95.2% for model 2). Conclusions This work utilizes a new feature, PSSM, which contributes to better performance than other features. In addition to SVM, SMO is used in this research for optimizing SVM and the SMO-optimized models show better performance than non-optimized models. Last but not least, this work provides two different functions, including distinguishing ACPs from AMPs and distinguishing ACPs from all peptides. The second SMO-optimized model, which utilizes PSSM as a feature, performs better than all other existing tools.


2021 ◽  
Vol 22 (S10) ◽  
Author(s):  
Zhijun Liao ◽  
Gaofeng Pan ◽  
Chao Sun ◽  
Jijun Tang

Abstract Background Protein subcellular localization prediction plays an important role in biology research. Since traditional methods are laborious and time-consuming, many machine learning-based prediction methods have been proposed. However, most of the proposed methods ignore the evolution information of proteins. In order to improve the prediction accuracy, we present a deep learning-based method to predict protein subcellular locations. Results Our method utilizes not only amino acid compositions sequence but also evolution matrices of proteins. Our method uses a bidirectional long short-term memory network that processes the entire protein sequence and a convolutional neural network that extracts features from protein sequences. The position specific scoring matrix is used as a supplement to protein sequences. Our method was trained and tested on two benchmark datasets. The experiment results show that our method yields accurate results on the two datasets with an average precision of 0.7901, ranking loss of 0.0758 and coverage of 1.2848. Conclusion The experiment results show that our method outperforms five methods currently available. According to those experiments, we can see that our method is an acceptable alternative to predict protein subcellular location.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Lili Wu

In view of the poor recommendation performance of traditional resource collaborative filtering recommendation algorithms, this article proposes a collaborative filtering recommendation model based on deep learning for art and MOOC resources. This model first uses embedding vectors based on the context of metapaths for learning. Embedding vectors based on the context of metapaths aggregate different metapath information and different MOOCs may have different preferences for different metapaths. Secondly, to capture this preference drift, the model introduces an attention mechanism, which can improve the interpretability of the recommendation results. Then, by introducing the Laplacian matrix into the prior distribution of the hidden factor feature matrix, the relational network information is effectively integrated into the model. Finally, compared with the traditional model using the scoring matrix, the model in this article using text word vectors effectively alleviates the impact of data sparsity and greatly improves the accuracy of prediction. After analyzing the experimental results, compared with other algorithms, the resource collaborative filtering recommendation model proposed in this article has achieved better recommendation results, with good stability and scalability.


Sign in / Sign up

Export Citation Format

Share Document