wetland mapping
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 37)

H-INDEX

19
(FIVE YEARS 5)

Author(s):  
M. Benchelha ◽  
F. Benzha ◽  
H. Rhinane ◽  
A. Zilali

Abstract. Wetlands are considered as sensitive ecosystems exposed and threatened by climate change and the urbanization of natural environments. In the purpose of managing these sensitive areas and conservatizing their biodiversity, remote sensing is an efficient way to track environmental variables over large areas as wetlands. However, when it comes to the study of hydrologic dynamics, high temporal and spatial resolutions are essential. Since the access to optical satellite imagery is restrictive because of the large cloud cover that masks the ground, radar sensors that are working in the microwave field, are particularly suited to the characterization of hydrological dynamics due to the sensitivity of their measurements in the presence of water, regardless of the vegetation in place. Recently, radar remote sensing has experienced a real revolution with the launch of the Sentinel-1A satellite in 2014, followed by its twin Sentinel-1B two years later by the European Space Agency as part of the Copernicus program. These sensors acquire C-band data (λ = 5.6 cm) with a temporal resolution of 12 days by satellite and their distribution is open and free. This article aims to assess the potential of Sentinel A1 SAR data for wetland mapping in the city of Benslimane (Central Morocco). The first part is explaining the methodology for mapping water surfaces. We identified a confusion of the C-band radar response of water surfaces and that of certain bare soils. We then showed that the VH polarization is the most suitable for the mapping of water surfaces, comparing four methods of detecting areas in water. It. The second part is discussing the use of unsupervised methods without a priori data demonstrating that the methods taking into account the spatial neighborhood give better results. Temporal filtering has been developed and has made it possible to improve detection and to overcome confusion between bare soil and permanent water surfaces. Water surfaces larger than 0.5 ha are at 80% detected. Classification was performed using the SVM (Support Vector Machine) algorithm. This latter information was then implemented into the thematic map derived from SPOT-4 images to obtain the final weltands map.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
M. V. Yanin ◽  
I. Yevdokimov

The most sound papers by Mikhail V. Glagolev were reviewed, and the scope of his research activities was provided in the context of his 55th anniversary. The abstracts of some significant publications are provided and deeply discussed. All the publications mentioned were divided into six groups: 1) gas dynamics of ecosystems; 2) wetland mapping; 3) microbiology; 4) modeling of environmental processes, and other mathematical methods; 5) other topics and discussion articles; 6) teaching activities and reviews. Also, scientometrics indicators of M.V. Glagolevs scientific activity were discussed.


2021 ◽  
Vol 13 (20) ◽  
pp. 4025
Author(s):  
S. Mohammad Mirmazloumi ◽  
Armin Moghimi ◽  
Babak Ranjgar ◽  
Farzane Mohseni ◽  
Arsalan Ghorbanian ◽  
...  

A large portion of Canada is covered by wetlands; mapping and monitoring them is of great importance for various applications. In this regard, Remote Sensing (RS) technology has been widely employed for wetland studies in Canada over the past 45 years. This study evaluates meta-data to investigate the status and trends of wetland studies in Canada using RS technology by reviewing the scientific papers published between 1976 and the end of 2020 (300 papers in total). Initially, a meta-analysis was conducted to analyze the status of RS-based wetland studies in terms of the wetland classification systems, methods, classes, RS data usage, publication details (e.g., authors, keywords, citations, and publications time), geographic information, and level of classification accuracies. The deep systematic review of 128 peer-reviewed articles illustrated the rising trend in using multi-source RS datasets along with advanced machine learning algorithms for wetland mapping in Canada. It was also observed that most of the studies were implemented over the province of Ontario. Pixel-based supervised classifiers were the most popular wetland classification algorithms. This review summarizes different RS systems and methodologies for wetland mapping in Canada to outline how RS has been utilized for the generation of wetland inventories. The results of this review paper provide the current state-of-the-art methods and datasets for wetland studies in Canada and will provide direction for future wetland mapping research.


2021 ◽  
pp. 1-18
Author(s):  
Ali Jamali ◽  
Masoud Mahdianpari ◽  
Brian Brisco ◽  
Jean Granger ◽  
Fariba Mohammadimanesh ◽  
...  

2021 ◽  
Vol 15 (03) ◽  
Author(s):  
Jean Elizabeth Granger ◽  
Masoud Mahdianpari ◽  
Thomas Puestow ◽  
Sherry Warren ◽  
Fariba Mohammadimanesh ◽  
...  

2021 ◽  
Vol 13 (16) ◽  
pp. 3315
Author(s):  
Meisam Amani ◽  
Valentin Poncos ◽  
Brian Brisco ◽  
Fatemeh Foroughnia ◽  
Evan R. DeLancey ◽  
...  

Wetlands are valuable natural resources which provide numerous services to the environment. Many studies have demonstrated the potential of various types of remote sensing datasets and techniques for wetland mapping and change analysis. However, there are a relatively low number of studies that have investigated the application of the Interferometric Synthetic Aperture Radar (InSAR) coherence products for wetland studies, especially over large areas. Therefore, in this study, coherence products over the entire province of Alberta, Canada (~661,000 km2) were generated using the Sentinel-1 data acquired from 2017 to 2020. Then, these products along with large amount of wetland reference samples were employed to assess the separability of different wetland types and their trends over time. Overall, our analyses showed that coherence can be considered as an added value feature for wetland classification and monitoring. The Treed Bog and Shallow Open Water classes showed the highest and lowest coherence values, respectively. The Treed Wetland and Open Wetland classes were easily distinguishable. When analyzing the wetland subclasses, it was observed that the Treed Bog and Shallow Open Water classes can be easily discriminated from other subclasses. However, there were overlaps between the signatures of the other wetland subclasses, although there were still some dates where these classes were also distinguishable. The analysis of multi-temporal coherence products also showed that the coherence products generated in spring/fall (e.g., May and October) and summer (e.g., July) seasons had the highest and lowest coherence values, respectively. It was also observed that wetland classes preserved coherence during the leaf-off season (15 August–15 October) while they had relatively lower coherence during the leaf-on season (i.e., 15 May–15 August). Finally, several suggestions for future studies were provided.


2021 ◽  
Keyword(s):  

Abstract The full text of this preprint has been withdrawn by the authors due to author disagreement with the posting of the preprint. Therefore, the authors do not wish this work to be cited as a reference. Questions should be directed to the corresponding author.


2021 ◽  
pp. 1-23
Author(s):  
Alex Okiemute Onojeghuo ◽  
Ajoke Ruth Onojeghuo ◽  
Michelle Cotton ◽  
Johnathan Potter ◽  
Brennan Jones

Sign in / Sign up

Export Citation Format

Share Document