steerable cannula
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

2015 ◽  
Vol 9 (2) ◽  
Author(s):  
Bardia Konh ◽  
Naresh V. Datla ◽  
Parsaoran Hutapea

Needle insertion is used in many diagnostic and therapeutic percutaneous medical procedures such as brachytherapy, thermal ablations, and breast biopsy. Insufficient accuracy using conventional surgical cannulas motivated researchers to provide actuation forces to the cannula's body for compensating the possible errors of surgeons/physicians. In this study, we present the feasibility of using shape memory alloy (SMA) wires as actuators for an active steerable surgical cannula. A three-dimensional (3D) finite element (FE) model of the active steerable cannula was developed to demonstrate the feasibility of using SMA wires as actuators to bend the surgical cannula. The material characteristics of SMAs were simulated by defining multilinear elastic isothermal stress–strain curves that were generated through a matlab code based on the Brinson model. Rigorous experiments with SMA wires were done to determine the material properties as well as to show the capability of the code to predict a stabilized SMA transformation behavior with sufficient accuracy. In the FE simulation, birth and death method was used to achieve the prestrain condition on SMA wire prior to actuation. This numerical simulation was validated with cannula deflection experiments with developed prototypes of the active cannula. Several design parameters affecting the cannula's deflection such as the cannula's Young's modulus, the SMA's prestrain, and its offset from the neutral axis of the cannula were studied using the FE model. Real-time experiments with different prototypes showed that the quickest response and the maximum deflection were achieved by the cannula with two sections of actuation compared to a single section of actuation. The numerical and experimental studies showed that a highly maneuverable active cannulas can be achieved using the actuation of multiple SMA wires in series.


Author(s):  
Bardia Konh ◽  
Mohammad Honarvar ◽  
Parsaoran Hutapea

In this article we present the feasibility of using the shape memory alloy (SMA) wires, namely Nitinol, as an actuator for a steerable surgical cannula. A 3D finite element (FE) model of the actuated steerable cannula was then developed in ANSYS to show deflection of the surgical cannula under the actuation force. The behavior of SMAs was simulated by defining the isothermal stress-strain curves using the multi-elasticity capability of ANSYS. The transformation temperatures of the Nitinol wire at different levels of stress were gathered to form the transformation diagram. Using the one-dimensional Brinson model, the isothermal stress-strain response of the wire was obtained. The thermomechanical characteristics of SMAs were also studied completely by a series of experiments performed on the wires. Birth and death method was used in the solution procedure to have the prestrain condition on Nitinol wire prior to the actuation step. A prototype of the actuated steerable cannula was also developed to validate the numerical simulation. Finally a study was done on design parameters affecting the deflection such as Young’s modulus of cannula, SMA diameter and its offset from the neutral axis of the cannula which can be useful in design optimization.


2013 ◽  
Vol 60 (9) ◽  
pp. 2567-2575 ◽  
Author(s):  
Jessica Burgner ◽  
Philip J. Swaney ◽  
Ray A. Lathrop ◽  
Kyle D. Weaver ◽  
Robert J. Webster

2012 ◽  
Vol 31 (5) ◽  
pp. 588-603 ◽  
Author(s):  
Elif Ayvali ◽  
Chia-Pin Liang ◽  
Mingyen Ho ◽  
Yu Chen ◽  
Jaydev P Desai

Sign in / Sign up

Export Citation Format

Share Document