AppliedMath
Latest Publications


TOTAL DOCUMENTS

8
(FIVE YEARS 8)

H-INDEX

0
(FIVE YEARS 0)

Published By MDPI AG

2673-9909

AppliedMath ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 39-53
Author(s):  
Jaya P. N. Bishwal

For stationary ergodic diffusions satisfying nonlinear homogeneous Itô stochastic differential equations, this paper obtains the Berry–Esseen bounds on the rates of convergence to normality of the distributions of the quasi maximum likelihood estimators based on stochastic Taylor approximation, under some regularity conditions, when the diffusion is observed at equally spaced dense time points over a long time interval, the high-frequency regime. It shows that the higher-order stochastic Taylor approximation-based estimators perform better than the basic Euler approximation in the sense of having smaller asymptotic variance.


AppliedMath ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 16-38
Author(s):  
Theodore P. Hill

This article introduces a new stochastic non-isotropic frictional abrasion model, in the form of a single short partial integro-differential equation, to show how frictional abrasion alone of a stone on a planar beach might lead to the oval shapes observed empirically. The underlying idea in this theory is the intuitive observation that the rate of ablation at a point on the surface of the stone is proportional to the product of the curvature of the stone at that point and the likelihood the stone is in contact with the beach at that point. Specifically, key roles in this new model are played by both the random wave process and the global (non-local) shape of the stone, i.e., its shape away from the point of contact with the beach. The underlying physical mechanism for this process is the conversion of energy from the wave process into the potential energy of the stone. No closed-form or even asymptotic solution is known for the basic equation, which is both non-linear and non-local. On the other hand, preliminary numerical experiments are presented in both the deterministic continuous-time setting using standard curve-shortening algorithms and a stochastic discrete-time polyhedral-slicing setting using Monte Carlo simulation.


AppliedMath ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 1-15
Author(s):  
Athanasios Fragkou ◽  
Avraam Charakopoulos ◽  
Theodoros Karakasidis ◽  
Antonios Liakopoulos

Understanding the underlying processes and extracting detailed characteristics of rivers is critical and has not yet been fully developed. The purpose of this study was to examine the performance of non-linear time series methods on environmental data. Specifically, we performed an analysis of water level measurements, extracted from sensors, located on specified stations along the Nestos River (Greece), with Recurrence Plots (RP) and Recurrence Quantification Analysis (RQA) methods. A more detailed inspection with the sliding windows (epoqs) method was applied on the Recurrence Rate, Average Diagonal Line and Trapping Time parameters, with results showing phase transitions providing useful information about the dynamics of the system. The suggested method seems to be promising for the detection of the dynamical transitions that can characterize distinct time windows of the time series and reveals information about the changes in state within the whole time series. The results will be useful for designing the energy policy investments of producers and also will be helpful for dam management assessment as well as government energy policy.


AppliedMath ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 63-73
Author(s):  
Vasilios N. Katsikis ◽  
Spyridon D. Mourtas

In finance, the most efficient portfolio is the tangency portfolio, which is formed by the intersection point of the efficient frontier and the capital market line. This paper defines and explores a time-varying tangency portfolio under nonlinear constraints (TV-TPNC) problem as a nonlinear programming (NLP) problem. Because meta-heuristics are commonly used to solve NLP problems, a semi-integer beetle antennae search (SIBAS) algorithm is proposed for solving cardinality constrained NLP problems and, hence, to solve the TV-TPNC problem. The main results of numerical applications in real-world datasets demonstrate that our method is a splendid substitute for other evolutionary methods.


AppliedMath ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 3-17
Author(s):  
Christophe Chesneau

Copulas are useful functions for modeling multivariate distributions through their univariate marginal distributions and dependence structures. They have a wide range of applications in all fields of science that deal with multivariate data. While there is a plethora of copulas, those based on trigonometric functions, especially in dimensions greater than two, have received much less attention. They are, however, of interest because of the properties of oscillation and periodicity of the trigonometric functions, which can appear in certain models of correlation of natural phenomena. In order to fill this gap, this paper introduces and investigates two new types of “multivariate trigonometric copulas”. Their main theoretical properties are studied, and some perspectives for applications are sketched for future work. In particular, we show that the proposed copulas are symmetric, not associative, with no orthant dependence, and with copula densities that have wide oscillations, which remains an uncommon property in the field. The expressions of their multivariate Spearman’s rho are also determined. Furthermore, the first type of the proposed copulas has the interesting feature of having a multivariate Spearman’s rho equal to 0 for all of the dimensions. Some graphic evidence supports the findings. Some mathematical formulas involving the product of n trigonometric functions may be of independent interest.


AppliedMath ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 37-62
Author(s):  
Anik Gomes ◽  
Jahangir Alam ◽  
Ghulam Murtaza ◽  
Tahmina Sultana ◽  
Efstratios E. Tzirtzilakis ◽  
...  

The aim of the present study is to analyze the effects of aligned magnetic field and radiation on biomagnetic fluid flow and heat transfer over an unsteady stretching sheet with various slip conditions. The magnetic field is assumed to be sufficiently strong enough to saturate the ferrofluid, and the variation of magnetization is approximated by a linear function of temperature difference. The governing boundary layer equations with boundary conditions are simplified by suitable transformations. Numerical solution is obtained by using the bvp4c function technique in MATLAB software. The numerical results are derived for the velocity, temperature, the skin friction coefficient, and the rate of heat transfer. The evaluated results are compared with analytical study documented in scientific literature. The present investigation illustrates that the fluid velocity is decreased with the increasing values of radiation parameter, magnetic parameter, and ferromagnetic interaction parameter, though is increased as the Prandtl number, Grashof number, permeable parameter and thermal slip parameter are increased. In this investigation, the suction/injection parameter had a good impact on the skin friction coefficient and the rate of heat transfer.


AppliedMath ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 18-36
Author(s):  
Hossein Hassani ◽  
Mahdi Kalantari ◽  
Christina Beneki

Singular spectrum analysis (SSA) is a popular filtering and forecasting method that is used in a wide range of fields such as time series analysis and signal processing. A commonly used approach to identify the meaningful components of a time series in the grouping step of SSA is the utilization of the visual information of eigentriples. Another supplementary approach is that of employing an algorithm that performs clustering based on the dissimilarity matrix defined by weighted correlation between the components of a time series. The SSA literature search revealed that no investigation has compared the various clustering methods. The aim of this paper was to compare the effectiveness of different hierarchical clustering linkages to identify the appropriate groups in the grouping step of SSA. The comparison was performed based on the corrected Rand (CR) index as a comparison criterion that utilizes various simulated series. It was also demonstrated via two real-world time series how one can proceed, step-by-step, to conduct grouping in SSA using a hierarchical clustering method. This paper is supplemented with accompanying R codes.


AppliedMath ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 1-2
Author(s):  
Takayuki Hibi

Mathematics has been built over thousands of years of history, since the creation of ancient civilizations [...]


Sign in / Sign up

Export Citation Format

Share Document