drift potential
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 34)

H-INDEX

12
(FIVE YEARS 3)

2022 ◽  
Vol 9 ◽  
Author(s):  
Weikang Shi ◽  
Zhibao Dong ◽  
Guoxiang Chen ◽  
Ziyi Bai ◽  
Fang Ma

The Sahara Desert is the largest source of dust on Earth, and has a significant impact on global atmospheric changes. Wind is the main dynamic factor controlling the transport and intensity of dust in the Sahara Desert. This study comprehensively analyzed the spatial and temporal variation in the wind regime of the Sahara Desert from 1980 to 2019 using data from 17 meteorological stations to improve awareness of global atmospheric changes and the intensity of regional aeolian activities. All wind speed parameters decreased from northwest to southeast. While there were significant differences in the trends of temporal variation in wind speed among the different regions, there was an overall decreasing trend across the Sahara Desert, with an average wind speed of 0.09 m s−1 10 a−1. This decrease was closely related to wind frequency. The easterly, westerly, and northerly winds dominated, with more complex wind direction in the northern region. Seasonal differences in wind direction were observed in all regions. The wind direction frequency of wind speeds >6 m s−1 exceeded those with wind speeds <6 m s−1 in the western and northern regions, whereas other regions showed an opposite pattern. The highest drift potential (DP) and resultant drift potential (RDP) were found in the western and northern regions, and during spring and winter. There was a trend of decreasing annual variation in DP and RDP in all regions. The directional variability (RDP/DP) indicated mostly intermediate and high variability in wind direction. Resultant drift direction (RDD) indicated that a mainly southwest wind direction. No apparent trends in temporal variation in RDD and RDP/DP were observed. Total DP was strongly influenced by DP and the magnitude and frequency of strong winds in the prevailing wind direction. No strong correlation between wind regimes and dune types was observed in this desert, indicating the complexity of factors affecting dune morphology.


2021 ◽  
Author(s):  
Bruno C. Vieira ◽  
Guilherme Sousa Alves ◽  
Barbara Vukoja ◽  
Vinicius Velho ◽  
Milos Zaric ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Zhidan Ba

Take the parabolic dune of Hobq desert in Inner Mongolia as research object. Based on the GIS platform by using differential GPS data and spatial interpolation to generate DEM, then using Multi-periods high resolution images to acquire the environmental background, at the same time combine with regional wind regime and vegetation condition to measure and analyze the morphology of the parabolic dune. The result shows that the parabolic dune showed U shape in plane, and dune arms point to the west which was also wind direction. The windward slope of longitudinal profile is gentler, while leeward slope is steeper. And cross section wasn’t symmetric. The dune’s average moving speed is 11.76 m/yr. Desert ridge line’s medial axis direction is WNW-ESE, in accord with the direction of prevailing wind and resultant drift potential. Artemisia Ordosicas mainly distribute on leeward slope, two arms, and the plane ground between them, and the annual average vegetation coverage decreased 0.95%. In the long-term effect of resultant wind, the dune keeps moving forward and Artemisia Ordosica between two arms show gradual natural stage recovery which presented zonal distribution. 3S technology has already become important research method in modern Aeolian sand morphology.


2021 ◽  
Vol 13 (16) ◽  
pp. 9050
Author(s):  
Mohammad Reza Rahdari ◽  
Andrés Rodríguez-Seijo

Aeolian sediments cover about 6% of the earth’s surface, of which 97% occur in arid regions, and these sediments cover about 20% of the world’s lands. Sand drifts can harm sensitive ecosystems; therefore, this research has aimed to study wind regimes and the monitoring of sand drift potential and dune mobility in the Khartouran Erg (NE Iran). The study investigated 30 years of wind speed and direction to better understand sand dune mobility processes using the Fryberger and Tsoar methods. The results of the wind regime study showed that the eastern (33.4%) and northeastern (14.3%) directions were more frequent, but the study of winds greater than the threshold (6 m/s) in winter, spring, and autumn indicated the dominance of eastern and northern wind directions. Findings of calm winds showed that winters (40.4%) had the highest frequency, and summers (15%) had the lowest frequency; the annual frequency was 30%. The average wind speed in summers was the highest (4.38 m/s), and, in the winters, it was the lowest (2.28 m/s); the annual average wind speed was 3.3 m/s. The annual drift potential (DP = 173 VU) showed that it was categorized as low class, and the winds carried sand to the southwest. The monitoring of drift potential showed that there was a sharp increase between 2003 and 2008, which could have been attributed to a change in wind speeds in the region. Unite directional index, the index of directional variability, has been alternating from 0.3 to 0.6 for 30 years. Furthermore, monitoring of sand mobility recorded a value from 0.1 to 0.4, and the lowest and highest values were registered from 0.08 to 0.9, with an average of 0.27. Finally, it can be concluded that sand dunes have been fixed for a long time, and the intensity of the mobility index is affected by climate changes.


2021 ◽  
Vol 11 (16) ◽  
pp. 7258
Author(s):  
Qi Liu ◽  
Shengde Chen ◽  
Guobin Wang ◽  
Yubin Lan

Background: Unmanned Aerial Vehicles (UAVs) applied to agricultural plant protection is widely used, and the field of operation is expanding due to their high efficiency and pesticide application reduction. However, the work on pesticide drift lags behind the development of the UAV spraying device. Methods: We compared the spray drift potential at four liquid pressures of 2, 3, 4, and 5 bar ejected from the hydraulic nozzles mounted on a UAV test platform exposed to different wind speeds of 2, 4, and 6 m/s produced by a wind tunnel. The combination of the wind tunnel and the UAV test platform was used to obtain strict test conditions. The droplet size distribution under spray drift pressures was measured by a laser diffraction instrument. Results: Increasing the pressure leads to smaller droplet volume diameters and produced fine droplets of less than 100 µm. The deposition in the drift area was elevated at most of the sampling locations by setting higher pressure and faster wind speed. The deposition ratios were all higher than the flow ratios under three wind speeds after the adjustment of pressures. For most samples within a short drift distance (2–8 m), the drift with the rotor motor off was more than an order of magnitude higher than that with the rotor motor on at a pressure of 3 bar. Conclusions: In this study, the wind speed and liquid pressure all had a significant effect on the UAV spray drift, and the rotor wind significantly inhibited a large number of droplets from drifting further.


Author(s):  
Shidong Xue ◽  
Jingkun Han ◽  
Xi Xi ◽  
Junyi Zhao ◽  
Zhong Lan ◽  
...  

Author(s):  
Bogusław Bożek ◽  
Lucjan Sapa ◽  
Katarzyna Tkacz-Śmiech ◽  
Marek Zajusz ◽  
Marek Danielewski

AbstractInterdiffusion between dissimilar solids can change the properties of joined materials. Although much work has been done to study experimentally and theoretically interdiffusion in one-dimensional (1-D) diffusion couples, studying interdiffusion in two-dimensional (2-D) or three-dimensional (3-D) solids remains a challenge. In this article, we report an experiment and develop a model to study interdiffusion in a multicomponent system of 2-D geometry. The results (concentration maps and profiles) are compared with data obtained by modeling and numerical simulations. It is assumed that the system satisfies Vegard’s rule and diffusion coefficients are composition dependent. To model the multidimensional diffusion with a drift, we take benefit of the concept of the drift potential. A nonlinear parabolic-elliptic system of strongly coupled differential equations is formulated and the implicit difference method, preserving Vegard’s rule, is applied in the simulations.


Sign in / Sign up

Export Citation Format

Share Document