gluon emission
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 8)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 81 (8) ◽  
Author(s):  
A. van Hameren ◽  
P. Kotko ◽  
K. Kutak ◽  
S. Sapeta ◽  
E. Żarów

AbstractWe propose a novel way of studying the gluon number density (the so-called Weizsäcker–Williams gluon distribution) using the planned Electron Ion Collider. Namely, with the help of the azimuthal correlations between the total transverse momentum of the dijet system and the scattered electron, we examine an interplay between the effect of the soft gluon emissions (the Sudakov form factor) and the gluon saturation effects. The kinematic cuts are chosen such that the dijet system is produced in the forward direction in the laboratory frame, which provides an upper bound on the probed longitudinal fractions of the hadron momentum carried by scattered gluons. Further cuts enable us to use the factorization formalism that directly involves the unpolarized Weizsäcker–Williams gluon distribution. We find this observable to be very sensitive to the soft gluon emission and moderately sensitive to the gluon saturation.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
João Barata ◽  
Fabio Domínguez ◽  
Carlos A. Salgado ◽  
Víctor Vila

Abstract QCD jets produced in heavy-ion collisions at LHC or RHIC energies partially evolve inside the produced hot and dense quark gluon plasma, offering unique opportunities to study QCD splitting processes in different backgrounds. Induced (modified) splittings are expected to be the most relevant mechanism driving the modifications of in-medium jets compared to vacuum jets for a wide sets of observables. Although color coherence among different emitters has been identified as an essential mechanism in studies of the QCD antenna radiation, it is usually neglected in the multi-gluon medium-induced cascade. This independent gluon emission approximation can be analytically proved to be valid in the limit of very large media, but corrections or modifications to it have not been computed before in the context of the evolution (or rate) equation describing the gluon cascade. We propose a modified evolution equation that includes corrections due to the interference of subsequent emitters. In order to do so, we first compute a modified splitting kernel following the usual procedure of factorizing it from the subsequent Brownian motion. The calculation is performed in the two-gluon configuration with no overlapping formation times, that is expected to provide the first correction to the completely independent picture.


2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Lance J. Dixon ◽  
Enrico Herrmann ◽  
Kai Yan ◽  
Hua Xing Zhu
Keyword(s):  

2019 ◽  
Vol 100 (3) ◽  
Author(s):  
Le Zhang ◽  
De-Fu Hou ◽  
Guang-You Qin

Proceedings ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Fabio Dominguez ◽  
Jose Guilherme Milhano ◽  
Carlos A. Salgado ◽  
Konrad Tywoniuk ◽  
Victor Vila

In the first part of this work we study the color coherence phenomenon by considering the well-known quark-antiquark antenna with an in-medium hard gluon emission and an extra very soft emission outside it—double antenna. By discussing the coherence effects in terms of the survival probability, we generalize previous studies of the antenna radiation to the case of more than two emitters. After providing support to the jet quenching picture with effective emitters in the QCD cascade, we present a novel setup of an antenna splitting inside the medium taking into account the finite formation time of the dipole, which turns out to be an important scale. We read into the role of coherence and the relevant time scales which control the scenario, while also providing theoretical support for vacuum-like emissions early in the medium. Finally, by mapping the spectrum of in-medium splittings through the corresponding kinematical Lund diagram, we appreciate regimes of a close correspondence to a semi-classical description.


Sign in / Sign up

Export Citation Format

Share Document