scholarly journals Flexibility of Lyapunov exponents with respect to two classes of measures on the torus

2021 ◽  
pp. 1-40
Author(s):  
ALENA ERCHENKO

Abstract We consider a smooth area-preserving Anosov diffeomorphism $f\colon \mathbb T^2\rightarrow \mathbb T^2$ homotopic to an Anosov automorphism L of $\mathbb T^2$ . It is known that the positive Lyapunov exponent of f with respect to the normalized Lebesgue measure is less than or equal to the topological entropy of L, which, in addition, is less than or equal to the Lyapunov exponent of f with respect to the probability measure of maximal entropy. Moreover, the equalities only occur simultaneously. We show that these are the only restrictions on these two dynamical invariants.


2009 ◽  
Vol 29 (5) ◽  
pp. 1529-1547 ◽  
Author(s):  
B. FALLER ◽  
C.-E. PFISTER

AbstractWe consider the map Tα,β(x):=βx+α mod 1, which admits a unique probability measure μα,β of maximal entropy. For x∈[0,1], we show that the orbit of x is μα,β-normal for almost all (α,β)∈[0,1)×(1,∞) (with respect to Lebesgue measure). Nevertheless, we construct analytic curves in [0,1)×(1,∞) along which the orbit of x=0 is μα,β-normal at no more than one point. These curves are disjoint and fill the set [0,1)×(1,∞). We also study the generalized β-transformations (in particular, the tent map). We show that the critical orbit x=1 is normal with respect to the measure of maximal entropy for almost all β.



2000 ◽  
Vol 20 (1) ◽  
pp. 77-84 ◽  
Author(s):  
KURT COGSWELL

We consider a $C^{1+1}$ diffeomorphism $f$ of a compact manifold $M$ which preserves an ergodic probability measure $\mu$. We conclude that $\mu$-a.e. $x \in M$ is contained in a disk $D_x \subset W^u(x)$, with $D_x$ open in the $W^u(x)$ topology, which exhibits an exponential volume growth rate greater than or equal to the measure-theoretic entropy of $f$ with respect to $\mu$. Drawing on results of Newhouse and Yomdin, we then find that when $f$ is $C^\infty$ and $\mu$ is a measure of maximal entropy, this exponential volume growth rate equals the topological entropy of $f$ for $\mu$-a.e. $x$.



2009 ◽  
Vol 29 (3) ◽  
pp. 919-940 ◽  
Author(s):  
KATRIN GELFERT ◽  
MICHAŁ RAMS

AbstractWe study the Hausdorff dimension for Lyapunov exponents for a class of interval maps which includes several non-hyperbolic situations. We also analyze the level sets of points with given lower and upper Lyapunov exponents and, in particular, with zero lower Lyapunov exponent. We prove that the level set of points with zero exponent has full Hausdorff dimension, but carries no topological entropy.



2013 ◽  
Vol 34 (6) ◽  
pp. 1816-1831 ◽  
Author(s):  
VAUGHN CLIMENHAGA ◽  
DANIEL J. THOMPSON

AbstractBowen showed that a continuous expansive map with specification has a unique measure of maximal entropy. We show that the conclusion remains true under weaker non-uniform versions of these hypotheses. To this end, we introduce the notions of obstructions to expansivity and specification, and show that if the entropy of such obstructions is smaller than the topological entropy of the map, then there is a unique measure of maximal entropy.



2012 ◽  
Vol 34 (2) ◽  
pp. 409-422 ◽  
Author(s):  
SALVADOR ADDAS-ZANATA ◽  
FÁBIO A. TAL ◽  
BRÁULIO A. GARCIA

AbstractIn this paper, we consider torus homeomorphisms $f$ homotopic to Dehn twists. We prove that if the vertical rotation set of $f$ is reduced to zero, then there exists a compact connected essential ‘horizontal’ set $K$, invariant under $f$. In other words, if we consider the lift $\hat {f}$ of $f$ to the cylinder, which has zero vertical rotation number, then all points have uniformly bounded motion under iterates of $\hat {f}$. Also, we give a simple explicit condition which, when satisfied, implies that the vertical rotation set contains an interval and thus also implies positive topological entropy. As a corollary of the above results, we prove a version of Boyland’s conjecture to this setting: if $f$ is area preserving and has a lift $\hat {f}$ to the cylinder with zero Lebesgue measure vertical rotation number, then either the orbits of all points are uniformly bounded under $\hat {f}$, or there are points in the cylinder with positive vertical velocity and others with negative vertical velocity.



2021 ◽  
pp. 1-14
Author(s):  
VIVIANE BALADI

Abstract We show that the ergodic integrals for the horocycle flow on the two-torus associated by Giulietti and Liverani with an Anosov diffeomorphism either grow linearly or are bounded; in other words, there are no deviations. For this, we use the topological invariance of the Artin–Mazur zeta function to exclude resonances outside the open unit disc. Transfer operators acting on suitable spaces of anisotropic distributions and their Ruelle determinants are the key tools used in the proof. As a bonus, we show that for any $C^\infty $ Anosov diffeomorphism F on the two-torus, the correlations for the measure of maximal entropy and $C^\infty $ observables decay with a rate strictly smaller than $e^{-h_{\mathrm {top}}(F)}$ . We compare our results with very recent related work of Forni.



2008 ◽  
Vol 18 (12) ◽  
pp. 3679-3687 ◽  
Author(s):  
AYDIN A. CECEN ◽  
CAHIT ERKAL

We present a critical remark on the pitfalls of calculating the correlation dimension and the largest Lyapunov exponent from time series data when trend and periodicity exist. We consider a special case where a time series Zi can be expressed as the sum of two subsystems so that Zi = Xi + Yi and at least one of the subsystems is deterministic. We show that if the trend and periodicity are not properly removed, correlation dimension and Lyapunov exponent estimations yield misleading results, which can severely compromise the results of diagnostic tests and model identification. We also establish an analytic relationship between the largest Lyapunov exponents of the subsystems and that of the whole system. In addition, the impact of a periodic parameter perturbation on the Lyapunov exponent for the logistic map and the Lorenz system is discussed.



2021 ◽  
pp. 1-43
Author(s):  
DOMINIC VECONI

Abstract We develop a thermodynamic formalism for a smooth realization of pseudo-Anosov surface homeomorphisms. In this realization, the singularities of the pseudo-Anosov map are assumed to be fixed, and the trajectories are slowed down so the differential is the identity at these points. Using Young towers, we prove existence and uniqueness of equilibrium states for geometric t-potentials. This family of equilibrium states includes a unique SRB measure and a measure of maximal entropy, the latter of which has exponential decay of correlations and the central limit theorem.



2002 ◽  
Vol 69 (3) ◽  
pp. 346-357 ◽  
Author(s):  
W.-C. Xie

The moment Lyapunov exponents of a two-dimensional viscoelastic system under bounded noise excitation are studied in this paper. An example of this system is the transverse vibration of a viscoelastic column under the excitation of stochastic axial compressive load. The stochastic parametric excitation is modeled as a bounded noise process, which is a realistic model of stochastic fluctuation in engineering applications. The moment Lyapunov exponent of the system is given by the eigenvalue of an eigenvalue problem. The method of regular perturbation is applied to obtain weak noise expansions of the moment Lyapunov exponent, Lyapunov exponent, and stability index in terms of the small fluctuation parameter. The results obtained are compared with those for which the effect of viscoelasticity is not considered.



1995 ◽  
Vol 15 (2) ◽  
pp. 317-331 ◽  
Author(s):  
M. Jiang ◽  
Ya B. Pesin ◽  
R. de la Llave

AbstractWe study the integrability of intermediate distributions for Anosov diffeomorphisms and provide an example of a C∞-Anosov diffeomorphism on a three-dimensional torus whose intermediate stable foliation has leaves that admit only a finite number of derivatives. We also show that this phenomenon is quite abundant. In dimension four or higher this can happen even if the Lyapunov exponents at periodic orbits are constant.



Sign in / Sign up

Export Citation Format

Share Document