primary aliphatic amine
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 8 (1) ◽  
pp. 44-49
Author(s):  
Xuan Dinh Luu ◽  
Thanh Thuy Nguyen ◽  
Ba Thuan Le ◽  
Mai Huong Le Thi

The solvent extraction is one of the most common method for separating Th from solution. Primary amine has higher selectivity for the extraction of Th(IV) than U(VI) and RE(III) in sulfate media. N1923 (a primary aliphatic amine with amino nitrogen linked to a secondary carbon consisting of branched alkyl groups in C19–23 range) is commonly used to extractTh. At room temperature using 0.1M N1923 amine as solvent in this work, the results showed thatthorium maximum extraction capacity was about 2.5g/L with concentration of sulfuric acid in the aqueous phase was 1M and for 3 minutes shaking. At room temperature for 3 minutes shaking the best conditions for scrubbing processwas using the mixture of acids H2SO4 0.2M and HNO3 0.1M, result inover 75%, Th was scrubbed in the aqueous phase only 0.7%. The separation of Th from leachate of monazite sulphation process was carried out on a multistage continuous flow extraction device (12 boxes), the thorium purity was 98%. Therefore, the use of amine solvents can purify thorium from rare-earth solutions in a sulfate medium


2017 ◽  
Vol 13 ◽  
pp. 2502-2508 ◽  
Author(s):  
Azim Ziyaei Halimehjani ◽  
Martin Dračínský ◽  
Petr Beier

A one-pot three-component route for the synthesis of S-trifluoromethyl dithiocarbamates by the reaction of secondary amines, carbon disulfide and Togni’s reagent is described. The reactions proceed in moderate to good yields. A similar reaction using a primary aliphatic amine afforded the corresponding isothiocyanate in high yield. A variable temperature NMR study revealed a rotational barrier of 14.6, 18.8, and 15.9 kcal/mol for the C–N bond in the dithiocarbamate moiety of piperidine, pyrrolidine, and diethylamine adducts, respectively. In addition, the calculated barriers of rotation are in reasonable agreement with the experiments.


2014 ◽  
Vol 14 (12) ◽  
pp. 5959-5967 ◽  
Author(s):  
X. Tang ◽  
D. Price ◽  
E. Praske ◽  
D. N. Vu ◽  
K. Purvis-Roberts ◽  
...  

Abstract. Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g., hydroxyl radical and nitrate radical). The particle can contain both secondary organic aerosol (SOA) and inorganic salts. The ratio of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ, ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3) contains less volatile compounds than the primary aliphatic amine (BA) aerosol. As relative humidity (RH) increases, inorganic amine salts are formed as a result of acid–base reactions. The CCN activity of the humid TMA–N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. The humid BA + N2O5 aerosol products were found to be very sensitive to the temperature at which the measurements were made within the streamwise continuous-flow thermal gradient CCN counter; κ ranges from 0.4 to 0.7 dependent on the instrument supersaturation (ss) settings. The variance of the measured aerosol κ values indicates that simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems' κ ranges within 0.2 < κ < 0.7. This work indicates that aerosols formed via nighttime reactions with amines are likely to produce hygroscopic and volatile aerosol, whereas photochemical reactions with OH produce secondary organic aerosol of lower CCN activity. The contributions of semivolatile secondary organic and inorganic material from aliphatic amines must be considered for accurate hygroscopicity and CCN predictions from aliphatic amine systems.


2014 ◽  
Vol 14 (1) ◽  
pp. 31-56 ◽  
Author(s):  
X. Tang ◽  
D. Price ◽  
E. Praske ◽  
D. Vu ◽  
K. Purvis-Roberts ◽  
...  

Abstract. Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3), contains less volatile compounds than the primary aliphatic amine (BA) aerosol. TMA + N2O5 form semi-volatile organics in low RH conditions that have κ ~ 0.20, indicative of slightly soluble organic material. As RH increases, several inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. Higher CCN activity (κ > 0.3) was also observed for humid BA+N2O5 aerosols compared with dry aerosol (κ ~ 0.2), as a result of the formation of inorganic salts such as NH4NO3 and butylamine nitrate (C4H11N · HNO3). Compared with TMA, BA+N2O5 reactions produce more volatile aerosols. The BA+N2O5 aerosol products under humid experiments were found to be very sensitive to the temperature within the stream-wise continuous flow thermal gradient CCN counter. The CCN counter, when set above a 21 °C temperature difference, evaporates BA+N2O5 aerosol formed at RH ≥ 30%; κ ranges from 0.4 to 0.7 and is dependent on the instrument supersaturation (ss) settings. The aerosol behaves non-ideally, hence simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems κ ranges from 0.2 < κ < 0.7. This work indicates that aerosols formed via nighttime reactions with amines are likely to produce hygroscopic and volatile aerosol whereas photochemical reactions with OH produce secondary organic aerosol of lower CCN activity. Thermal gradient CCN counters measurement will impact the observed CCN activity of volatile aerosol formed via a nitric acid pathway. The contributions of semi-volatile secondary organic and inorganic material from aliphatic amines must be considered for accurate hygroscopicity and CCN predictions from aliphatic amine systems.


1997 ◽  
Vol 50 (1-2) ◽  
pp. 167-173 ◽  
Author(s):  
G. Kenessey ◽  
B. R. Carson ◽  
J. R. Allan ◽  
T. Wadsten ◽  
G. Liptay

Sign in / Sign up

Export Citation Format

Share Document