aox1 promoter
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 5)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
D. S. Bytyak ◽  
O. S. Korneeva ◽  
E. A. Motina

Currently, there is a significant increase in interest in the industrial production of enzyme preparations (and other recombinant proteins) using various microorganisms, including methylotrophic yeasts such as Komagataella phaffii. At the same time, the most significant productivity of the target proteins is achieved by methanol induction of heterologous genes cloned under the control of the AOX1 promoter. Thus, the efficiency of biosynthesis is largely determined by the metabolism of methanol. In this connection, the aim of the work is to develop an optimal strategy for methanol induction of the AOX1 promoter of Komagataella phaffii. The object of the study is the culture of the recombinant phospholipase A2 producing strain Komagataella phaffii. The studies were carried out in a laboratory fermenter Infors Minifors (Switzerland) on a liquid nutrient medium BSM (Basal Salt Medium) We used the generally accepted methods of studying the characteristics of metabolic activity, including the calculation of specific characteristics and productivity of the strain. The result of the study is the determination of the specific rate of consumption of methanol used as a carbon source, which was 19.2±1.8 mg/g*h. Also, the specific growth rate of Komagataella phaffii was determined and amounted to 0.24 h-1.Based on the data obtained during the research, a strategy for the induction of the AOX1 promoter in the cultivation of the methylotrophic yeast Komagataella phaffii was developed by maintaining the methanol concentration in the range of 0.6 to 2% based on the concentration of dissolved oxygen in the medium. The developed strategy of induction of the AOX1 promoter made it possible to obtain at least 1.87 g / l of recombinant protein (phospholipase A2) during cultivation of Komagataella phaffii for 96 h, which is 3.7 times higher than the known results.


2019 ◽  
Vol 19 (6) ◽  
Author(s):  
Shinobu Takagi ◽  
Noriko Tsutsumi ◽  
Yuji Terui ◽  
XiangYu Kong ◽  
Hiroya Yurimoto ◽  
...  

ABSTRACT The construction of a methanol-free expression system of Komagataella phaffii (Pichia pastoris) was attempted by engineering a strong methanol-inducible DAS1 promoter using Citrobacter braakii phytase production as a model case. Constitutive expression of KpTRM1, formerly PRM1—a positive transcription regulator for methanol-utilization (MUT) genes of K. phaffii,was demonstrated to produce phytase without addition of methanol, especially when a DAS1 promoter was used but not an AOX1 promoter. Another positive regulator, Mxr1p, did not have the same effect on the DAS1 promoter, while it was more effective than KpTrmp1 on the AOX1 promoter. Removing a potential upstream repression sequence (URS) and multiplying UAS1DAS1 in the DAS1 promoter significantly enhanced the yield of C. braakii phytase with methanol-feeding, which surpassed the native AOX1 promoter by 80%. However, multiplying UAS1DAS1 did not affect the yield of methanol-free expression by constitutive KpTrm1p. Another important region to enhance the effect of KpTrm1p under a methanol-free condition was identified in the DAS1 promoter, and was termed ESPDAS1. Nevertheless, methanol-free phytase production using an engineered DAS1 promoter outperformed phytase production with the GAP promoter by 25%. Difference in regulation by known transcription factors on the AOX1 promoter and the DAS1 promoter was also illustrated.


Yeast ◽  
2019 ◽  
Vol 36 (5) ◽  
pp. 297-304 ◽  
Author(s):  
Edgar Velastegui ◽  
Chrispian Theron ◽  
Julio Berrios ◽  
Patrick Fickers

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Jun Yang ◽  
Haiming Cai ◽  
Jie Liu ◽  
Min Zeng ◽  
Jiawei Chen ◽  
...  

2017 ◽  
Vol 45 (1) ◽  
pp. 25-30 ◽  
Author(s):  
Jinjia Wang ◽  
Xiaolong Wang ◽  
Lei Shi ◽  
Yuanxing Zhang ◽  
Xiangshan Zhou ◽  
...  

2017 ◽  
Vol 137 ◽  
pp. 7-12 ◽  
Author(s):  
Jonas Y. Lee ◽  
Hao Chen ◽  
Alan Liu ◽  
Benjamin M. Alba ◽  
Ai Ching Lim

Sign in / Sign up

Export Citation Format

Share Document