feedback circuit
Recently Published Documents


TOTAL DOCUMENTS

306
(FIVE YEARS 61)

H-INDEX

39
(FIVE YEARS 2)

2022 ◽  
Vol 14 (4) ◽  
pp. 35-42
Author(s):  
V. Zolnikov ◽  
F. Makarenko ◽  
I. Zhuravleva ◽  
Elena Popova ◽  
Yu. Gridnev ◽  
...  

The paper considers circuit engineering methods for protecting the electronic component base from the effects of heavy charged particles. One of the main methods is to increase the capacity of the device, which leads to an increase in the capacity of diffusion regions and a decrease in the frequency of single events. The structure of a capacitor is shown, which is connected to various nodes of the circuit to increase the sensitivity of the capacitance of the node. The article focuses on the method of using active RC circuits in the feedback circuit of a storage device cell. The advantages and disadvantages of the methods of using a storage device cell with internal redundancy are noted. The paper shows that the use of circuit engineering methods will provide the required level of fault and fault tolerance to the effects of heavy charged particles.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Akira Kamimaki ◽  
Tomoyuki Kubota ◽  
Sumito Tsunegi ◽  
Kohei Nakajima ◽  
Tomohiro Taniguchi ◽  
...  
Keyword(s):  

2021 ◽  
Vol 26 (3) ◽  
Author(s):  
Artur Volodymyrovych Zahranychnii ◽  
Olena Olehivna Abakumova

In the article on the basis of the theory of invariance the increase of accuracy of work of system with the converter for nuclear magnetic logging under condition of change of parameters of loading is considered. Based on the proposed functional scheme of two-channel control, formulas are given to determine the structural relationships and internal influences on the parameters of the control system components to reduce the impact of disturbances that occur both by changing load parameters and by changing the supply voltage. To maintain the required value of the carrier voltage amplitude, it is necessary to increase the reference voltage or decrease the amplitude of the sawtooth voltage, which is equivalent to increasing the gain of the feedback circuit. In this case, if you increase the gain of the feedback circuit, you must ensure that the stability of the system is maintained. The implementation of these proposals gives a more accurate formation of the bypass probing signal. The given functional scheme provides realization of regulation and stabilization of amplitude. The paper considers various options for reducing the effect of power supply perturbation on the output parameters of the converter. By changing the period of operation of the sawtooth voltage generator, which is determined by the frequency of the voltage-controlled generator and depends on the output frequency of the inverter, which varies depending on the parameters and properties of the rock during logging, the accuracy of stabilizing the amplitude of the probe signal increases. In the proposed two-channel control system, the first channel provides regulation and stabilization of the amplitude of the output voltage in accordance with the reference voltage. The second channel provides a change in the frequency of the sawtooth voltage generator by determining the period of the voltage-controlled generator from the phase detector, which determines the deviation of the real frequency from the frequency of the reference generator. The application of the above techniques allows to build circuit implementations of the system with transducers for nuclear magnetic logging, which meet the requirements for the accuracy of the formation of the bypass probing signal.


Author(s):  
Guangbao Zhang ◽  
Shuting Hu ◽  
Xiaoqiang Jia

Although many whole-cell biosensors (WCBs) for the detection of Cd2+ have been developed over the years, most lack sensitivity and specificity. In this paper, we developed a Cd2+ WCB with a negative feedback amplifier in P. putida KT2440. Based on the slope of the linear detection curve as a measure of sensitivity, WCB with negative feedback amplifier greatly increased the output signal of the reporter mCherry, resulting in 33% greater sensitivity than in an equivalent WCB without the negative feedback circuit. Moreover, WCB with negative feedback amplifier exhibited increased Cd2+ tolerance and a lower detection limit of 0.1 nM, a remarkable 400-fold improvement compared to the WCB without the negative feedback circuit, which is significantly below the World Health Organization standard of 27 nM (0.003 mg/L) for cadmium in drinking water. Due to the superior amplification of the output signal, WCB with negative feedback amplifier can provide a detectable signal in a much shorter time, and a fast response is highly preferable for real field applications. In addition, the WCB with negative feedback amplifier showed an unusually high specificity for Cd2+ compared to other metal ions, giving signals with other metals that were between 17.6 and 41.4 times weaker than with Cd2+. In summary, the negative feedback amplifier WCB designed in this work meets the requirements of Cd2+ detection with very high sensitivity and specificity, which also demonstrates that genetic negative feedback amplifiers are excellent tools for improving the performance of WCBs.


2021 ◽  
Author(s):  
Ryan Rahy ◽  
Hiroki Asari ◽  
Cornelius T. Gross

AbstractThe mouse ventromedial hypothalamus (VMH) is both necessary and sufficient for defensive responses to predator and social threats. Defensive behaviors typically involve cautious approach toward potentially threatening stimuli aimed at obtaining information about the risk involved, followed by sudden avoidance and flight behavior to escape harm. In vivo neural recording studies in mice have identified two major populations of VMH neurons that either increase their firing activity as the animal approaches the threat (called Assessment+ cells) or increase their activity as the animal flees the threat (called Flight+ cells). Interestingly, Assessment+ and Flight+ cells abruptly decrease and increase their firing activity, respectively, at the decision point for flight, creating an escape-related “switch” in functional state. This suggests that the activity of the two cell types in VMH is coordinated and could result from local circuit interactions. Here, we used computational modelling to test if a local inhibitory feedback circuit could give rise to key features of the neural activity seen in VMH during the approach-to-flight transition. Starting from a simple dual-population inhibitory feedback circuit receiving repeated trains of monotonically increasing sensory input to mimic approach to threat, we tested the requirement for balanced sensory input, balanced feedback, short-term synaptic plasticity, rebound excitation, and inhibitory feedback exclusivity to reproduce an abrupt, sensory-thresholded reciprocal firing change that resembles Assessment+ and Flight+ cell activity seen in vivo. Our work demonstrates that a relatively simple local circuit architecture is sufficient for the emergence of firing patterns similar to those seen in vivo and suggests that a reiterative process of experimental and computational work may be a fruitful avenue for better understanding the functional organization of mammalian instinctive behaviors at the circuit level.


Sign in / Sign up

Export Citation Format

Share Document