anytime algorithms
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 1)

2022 ◽  
Vol 40 (1) ◽  
pp. 1-32
Author(s):  
Joel Mackenzie ◽  
Matthias Petri ◽  
Alistair Moffat

Inverted indexes continue to be a mainstay of text search engines, allowing efficient querying of large document collections. While there are a number of possible organizations, document-ordered indexes are the most common, since they are amenable to various query types, support index updates, and allow for efficient dynamic pruning operations. One disadvantage with document-ordered indexes is that high-scoring documents can be distributed across the document identifier space, meaning that index traversal algorithms that terminate early might put search effectiveness at risk. The alternative is impact-ordered indexes, which primarily support top- disjunctions but also allow for anytime query processing, where the search can be terminated at any time, with search quality improving as processing latency increases. Anytime query processing can be used to effectively reduce high-percentile tail latency that is essential for operational scenarios in which a service level agreement (SLA) imposes response time requirements. In this work, we show how document-ordered indexes can be organized such that they can be queried in an anytime fashion, enabling strict latency control with effective early termination. Our experiments show that processing document-ordered topical segments selected by a simple score estimator outperforms existing anytime algorithms, and allows query runtimes to be accurately limited to comply with SLA requirements.


Author(s):  
Jiaoyang Li ◽  
Zhe Chen ◽  
Daniel Harabor ◽  
Peter J. Stuckey ◽  
Sven Koenig

Multi-Agent Path Finding (MAPF) is the challenging problem of computing collision-free paths for multiple agents. Algorithms for solving MAPF can be categorized on a spectrum. At one end are (bounded-sub)optimal algorithms that can find high-quality solutions for small problems. At the other end are unbounded-suboptimal algorithms that can solve large problems but usually find low-quality solutions. In this paper, we consider a third approach that combines the best of both worlds: anytime algorithms that quickly find an initial solution using efficient MAPF algorithms from the literature, even for large problems, and that subsequently improve the solution quality to near-optimal as time progresses by replanning subgroups of agents using Large Neighborhood Search. We compare our algorithm MAPF-LNS against a range of existing work and report significant gains in scalability, runtime to the initial solution, and speed of improving the solution.


Author(s):  
Bojie Shen ◽  
Muhammad Aamir Cheema ◽  
Daniel Harabor ◽  
Peter J. Stuckey

We consider optimal and anytime algorithms for the Euclidean Shortest Path Problem (ESPP) in two dimensions. Our approach leverages ideas from two recent works: Polyanya, a mesh-based ESPP planner which we use to represent and reason about the environment, and Compressed Path Databases, a speedup technique for pathfinding on grids and spatial networks, which we exploit to compute fast candidate paths. In a range of experiments and empirical comparisons we show that: (i) the auxiliary data structures required by the new method are cheap to build and store; (ii) for optimal search, the new algorithm is faster than a range of recent ESPP planners, with speedups ranging from several factors to over one order of magnitude; (iii) for anytime search, where feasible solutions are needed fast, we report even better runtimes.


Author(s):  
Rodrick Wallace

It has long been understood that the inevitably time-constrained cognitive processes of command on a Clausewitz landscape of uncertainty and imprecision are subject to gross instabilities. Even very experienced, capable, and intelligent command teams lose wars. Using formal approaches from control and information theories, we show how failure to understand and recognize underlying structure and dynamics in organized conflict expresses itself as increased “noise,” eventually triggering strategic collapse, often in a highly punctuated manner


2020 ◽  
Vol 114 ◽  
pp. 104827 ◽  
Author(s):  
Marko Djukanovic ◽  
Günther R. Raidl ◽  
Christian Blum
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document