Digital rock physics revealing the relationships between permeability, resistivity and elastic wave velocity of rock fractures

2021 ◽  
Author(s):  
Kazuki Sawayama ◽  
Takuya Ishibashi ◽  
Fei Jiang ◽  
Tatsunori Ikeda ◽  
Takeshi Tsuji ◽  
...  
2021 ◽  
Vol 54 (5) ◽  
pp. 2145-2164
Author(s):  
K. Sawayama ◽  
T. Ishibashi ◽  
F. Jiang ◽  
T. Tsuji ◽  
Y. Fujimitsu

AbstractMonitoring the hydraulic properties within subsurface fractures is vitally important in the contexts of geoengineering developments and seismicity. Geophysical observations are promising tools for remote determination of subsurface hydraulic properties; however, quantitative interpretations are hampered by the paucity of relevant geophysical data for fractured rock masses. This study explores simultaneous changes in hydraulic and geophysical properties of natural rock fractures with increasing normal stress and correlates these property changes through coupling experiments and digital fracture simulations. Our lattice Boltzmann simulation reveals transitions in three-dimensional flow paths, and finite-element modeling enables us to investigate the corresponding evolution of geophysical properties. We show that electrical resistivity is linked with permeability and flow area regardless of fracture roughness, whereas elastic wave velocity is roughness-dependent. This discrepancy arises from the different sensitivities of these quantities to microstructure: velocity is sensitive to the spatial distribution of asperity contacts, whereas permeability and resistivity are insensitive to contact distribution, but instead are controlled by fluid connectivity. We also are able to categorize fracture flow patterns as aperture-dependent, aperture-independent, or disconnected flows, with transitions at specific stress levels. Elastic wave velocity offers potential for detecting the transition between aperture-dependent flow and aperture-independent flow, and resistivity is sensitive to the state of connection of the fracture flow. The hydraulic-electrical-elastic relationships reported here may be beneficial for improving geophysical interpretations and may find applications in studies of seismogenic zones and geothermal reservoirs.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jack Dvorkin ◽  
Joel Walls ◽  
Gabriela Davalos

By examining wireline data from Woodford and Wolfcamp gas shale, we find that the primary controls on the elastic-wave velocity are the total porosity, kerogen content, and mineralogy. At a fixed porosity, both Vp and Vs strongly depend on the clay content, as well as on the kerogen content. Both velocities are also strong functions of the sum of the above two components. Even better discrimination of the elastic properties at a fixed porosity is attained if we use the elastic-wave velocity of the solid matrix (including kerogen) of rock as the third variable. This finding, fairly obvious in retrospect, helps combine all mineralogical factors into only two variables, Vp and Vs of the solid phase. The constant-cement rock physics model, whose mathematical form is the modified lower Hashin-Shtrikman elastic bound, accurately describes the data. The inputs to this model include the elastic moduli and density of the solid component (minerals plus kerogen), those of the formation fluid, the differential pressure, and the critical porosity and coordination number (the average number of grain-to-grain contacts at the critical porosity). We show how this rock physics model can be used to predict the elastic properties from digital images of core, as well as 2D scanning electron microscope images of very small rock fragments.


1997 ◽  
Vol 62 (11) ◽  
pp. 1698-1709
Author(s):  
Miloslav Hartman ◽  
Zdeněk Beran ◽  
Václav Veselý ◽  
Karel Svoboda

The onset of the aggregative mode of liquid-solid fluidization was explored. The experimental findings were interpreted by means of the dynamic (elastic) wave velocity and the voidage propagation (continuity) wave velocity. For widely different systems, the mapping of regimes has been presented in terms of the Archimedes number, the Froude number and the fluid-solid density ratio. The proposed diagram also depicts the typical Geldart's Group A particles fluidized with air.


2021 ◽  
Vol 11 (5) ◽  
pp. 2113-2125
Author(s):  
Chenzhi Huang ◽  
Xingde Zhang ◽  
Shuang Liu ◽  
Nianyin Li ◽  
Jia Kang ◽  
...  

AbstractThe development and stimulation of oil and gas fields are inseparable from the experimental analysis of reservoir rocks. Large number of experiments, poor reservoir properties and thin reservoir thickness will lead to insufficient number of cores, which restricts the experimental evaluation effect of cores. Digital rock physics (DRP) can solve these problems well. This paper presents a rapid, simple, and practical method to establish the pore structure and lithology of DRP based on laboratory experiments. First, a core is scanned by computed tomography (CT) scanning technology, and filtering back-projection reconstruction method is used to test the core visualization. Subsequently, three-dimensional median filtering technology is used to eliminate noise signals after scanning, and the maximum interclass variance method is used to segment the rock skeleton and pore. Based on X-ray diffraction technology, the distribution of minerals in the rock core is studied by combining the processed CT scan data. The core pore size distribution is analyzed by the mercury intrusion method, and the core pore size distribution with spatial correlation is constructed by the kriging interpolation method. Based on the analysis of the core particle-size distribution by the screening method, the shape of the rock particle is assumed to be a more practical irregular polyhedron; considering this shape and the mineral distribution, the DRP pore structure and lithology are finally established. The DRP porosity calculated by MATLAB software is 32.4%, and the core porosity measured in a nuclear magnetic resonance experiment is 29.9%; thus, the accuracy of the model is validated. Further, the method of simulating the process of physical and chemical changes by using the digital core is proposed for further study.


Author(s):  
Mohammad Ebadi ◽  
Denis Orlov ◽  
Ivan Makhotin ◽  
Vladislav Krutko ◽  
Boris Belozerov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document