cyclic nucleotide gated channels
Recently Published Documents


TOTAL DOCUMENTS

329
(FIVE YEARS 38)

H-INDEX

53
(FIVE YEARS 5)

2021 ◽  
Vol 12 ◽  
Author(s):  
Jian Sun ◽  
Youzheng Ning ◽  
Limin Wang ◽  
Katie A. Wilkins ◽  
Julia M. Davies

Extracellular ATP (eATP) is now held to be a constitutive damage-associated molecular pattern (DAMP) that is released by wounding, herbivory or pathogen attack. The concentration of eATP must be tightly regulated as either depletion or overload leads to cell death. In Arabidopsis thaliana, sensing of eATP is by two plasma membrane legume-like lectin serine–threonine receptor kinases (P2K1 and P2K2), although other receptors are postulated. The transcriptional response to eATP is dominated by wound- and defense-response genes. Wounding and pathogen attack can involve the cyclic nucleotides cyclic AMP (cAMP) and cyclic GMP (cGMP) which, in common with eATP, can increase cytosolic-free Ca2+ as a second messenger. This perspective on DAMP signaling by eATP considers the possibility that the eATP pathway involves production of cyclic nucleotides to promote opening of cyclic nucleotide-gated channels and so elevates cytosolic-free Ca2+. In silico analysis of P2K1 and P2K2 reveals putative adenylyl and guanylyl kinase sequences that are the hallmarks of “moonlighting” receptors capable of cAMP and cGMP production. Further, an Arabidopsis loss of function cngc mutant was found to have an impaired increase in cytosolic-free Ca2+ in response to eATP. A link between eATP, cyclic nucleotides, and Ca2+ signaling therefore appears credible.


Life Sciences ◽  
2021 ◽  
pp. 120203
Author(s):  
Nishant Singh ◽  
Irina Zabbarova ◽  
Youko Ikeda ◽  
Anthony Kanai ◽  
Christopher Chermansky ◽  
...  

2021 ◽  
Vol 11 (11) ◽  
Author(s):  
Ka‐Chun Mok ◽  
Ho Tsoi ◽  
Ellen PS Man ◽  
Man‐Hong Leung ◽  
Ka Man Chau ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2572
Author(s):  
Raminta Vaiciuleviciute ◽  
Daiva Bironaite ◽  
Ilona Uzieliene ◽  
Ali Mobasheri ◽  
Eiva Bernotiene

Osteoarthritis (OA) and cardiovascular diseases (CVD) share many similar features, including similar risk factors and molecular mechanisms. A great number of cardiovascular drugs act via different ion channels and change ion balance, thus modulating cell metabolism, osmotic responses, turnover of cartilage extracellular matrix and inflammation. These drugs are consumed by patients with CVD for many years; however, information about their effects on the joint tissues has not been fully clarified. Nevertheless, it is becoming increasingly likely that different cardiovascular drugs may have an impact on articular tissues in OA. Here, we discuss the potential effects of direct and indirect ion channel modulating drugs, including inhibitors of voltage gated calcium and sodium channels, hyperpolarization-activated cyclic nucleotide-gated channels, β-adrenoreceptor inhibitors and angiotensin-aldosterone system affecting drugs. The aim of this review was to summarize the information about activities of cardiovascular drugs on cartilage and subchondral bone and to discuss their possible consequences on the progression of OA, focusing on the modulation of ion channels in chondrocytes and other joint cells, pain control and regulation of inflammation. The implication of cardiovascular drug consumption in aetiopathogenesis of OA should be considered when prescribing ion channel modulators, particularly in long-term therapy protocols.


2021 ◽  
Author(s):  
Viktor Szegedi ◽  
Emoke Bakos ◽  
Szabina Furdan ◽  
Pal Barzo ◽  
Gabor Tamas ◽  
...  

Neurons in the mammalian brain exhibit evolution-driven species-specific differences in their functional properties. Therefore, understanding the human brain requires unraveling the human neuron 'uniqueness' and how it contributes to the operation of specific neuronal circuits. We show here that a highly abundant type of inhibitory neurons in the neocortex, GABAergic parvalbumin-expressing basket cell (pv+BC), exhibits in the human brain a specific somatic leak current mechanism, which is absent in their rodent neuronal counterparts. Human pv+BC soma shows electric leak conductance mediated by hyperpolarization-activated cyclic nucleotide-gated channels. This leak conductance has depolarizing effects on the resting membrane potential and it accelerates the rise of synaptic potentials in the cell soma. The leak facilitates the human pv+BC input-to-output fidelity and shortens the action potential generation to excitatory inputs. This mechanism constitutes an adaptation that enhances signal transmission fidelity and speed in the common inhibitory circuit in the human but not in the rodent neocortex.


2021 ◽  
Author(s):  
Jie He ◽  
Nico Rössner ◽  
Minh T T Hoang ◽  
Santiago Alejandro ◽  
Edgar Peiter

Abstract Calcium (Ca2+) and manganese (Mn2+) are essential elements for plants and have similar ionic radii and binding coordination. They are assigned specific functions within organelles, but share many transport mechanisms to cross organellar membranes. Despite their points of interaction, those elements are usually investigated and reviewed separately. This review takes them out of this isolation. It highlights our current mechanistic understanding and points to open questions of their functions, their transport, and their interplay in the endoplasmic reticulum (ER), vesicular compartments [Golgi apparatus, trans-Golgi Network (TGN), prevacuolar compartment (PVC)], vacuoles, chloroplasts, mitochondria, and peroxisomes. Complex processes demanding these cations, such as Mn2+-dependent glycosylation or systemic Ca2+ signaling, are covered in some detail if they have not been reviewed recently or if recent findings add to current models. The function of Ca2+ as signaling agent released from organelles into the cytosol and within the organelles themselves is a recurrent theme of this review, again keeping the interference by Mn2+ in mind. The involvement of organellar channels [e.g., Glutamate-Receptor-Likes (GLRs), Cyclic-Nucleotide-Gated Channels (CNGCs), Mitochondrial Conductivity Units (MCUs), Two-Pore Channel1 (TPC1)], transporters [e.g., Natural-Resistance-Associated Macrophage Proteins (NRAMPs), Calcium Exchangers (CAXs), Metal-Tolerance Proteins (MTPs), Bivalent-Cation Transporters (BICATs)] and pumps [Autoinhibited Ca2+-ATPases (ACAs), ER Ca2+-ATPases (ECAs)] in the import and export of organellar Ca2+ and Mn2+ is scrutinized, whereby current controversial issues are pointed out. Mechanisms in animals and yeast are taken into account where they may provide a blueprint for processes in plants, in particular with respect to tunable molecular mechanisms of Ca2+-versus-Mn2+ selectivity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Brygida Świeżawska-Boniecka ◽  
Maria Duszyn ◽  
Mateusz Kwiatkowski ◽  
Adriana Szmidt-Jaworska ◽  
Krzysztof Jaworski

A variety of plant cellular activities are regulated through mechanisms controlling the level of signal molecules, such as cyclic nucleotides (cNMPs, e.g., cyclic adenosine 3′:5′-monophosphate, cAMP, and cyclic guanosine 3′:5′- monophosphate, cGMP) and calcium ions (Ca2+). The mechanism regulating cNMP levels affects their synthesis, degradation, efflux and cellular distribution. Many transporters and the spatiotemporal pattern of calcium signals, which are transduced by multiple, tunable and often strategically positioned Ca2+-sensing elements, play roles in calcium homeostasis. Earlier studies have demonstrated that while cNMPs and Ca2+ can act separately in independent transduction pathways, they can interact and function together. Regardless of the context, the balance between Ca2+ and cNMP is the most important consideration. This balance seems to be crucial for effectors, such as phosphodiesterases, cyclic nucleotide gated channels and cyclase activity. Currently, a wide range of molecular biology techniques enable thorough analyses of cellular cross talk. In recent years, data have indicated relationships between calcium ions and cyclic nucleotides in mechanisms regulating specific signaling pathways. The purpose of this study is to summarize the current knowledge on nucleotide-calcium cross talk in plants.


2021 ◽  
Vol 22 (3) ◽  
pp. 1367
Author(s):  
Ilona Turek ◽  
Helen Irving

Plants as sessile organisms face daily environmental challenges and have developed highly nuanced signaling systems to enable suitable growth, development, defense, or stalling responses. Moonlighting proteins have multiple tasks and contribute to cellular signaling cascades where they produce additional variables adding to the complexity or fuzziness of biological systems. Here we examine roles of moonlighting kinases that also generate 3′,5′-cyclic guanosine monophosphate (cGMP) in plants. These proteins include receptor like kinases and lipid kinases. Their guanylate cyclase activity potentiates the development of localized cGMP-enriched nanodomains or niches surrounding the kinase and its interactome. These nanodomains contribute to allosteric regulation of kinase and other molecules in the immediate complex directly or indirectly modulating signal cascades. Effects include downregulation of kinase activity, modulation of other members of the protein complexes such as cyclic nucleotide gated channels and potential triggering of cGMP-dependent degradation cascades terminating signaling. The additional layers of information provided by the moonlighting kinases are discussed in terms of how they may be used to provide a layer of fuzziness to effectively modulate cellular signaling cascades.


Sign in / Sign up

Export Citation Format

Share Document