2010 ◽  
Vol 67 (2) ◽  
pp. 434-451 ◽  
Author(s):  
Sukyoung Lee

Abstract A two-layer quasigeostrophic model is used to study the equilibration of baroclinic waves. In this model, if the background flow is relaxed toward a jetlike profile, a finite-amplitude baroclinic wave solution can be realized in both supercritical and subcritical regions of the model’s parameter space. Analyses of the model equations and numerical model calculations indicate that the finite-amplitude wave equilibration hinges on the breaking of Rossby waves before they reach their critical latitude. This “jetward” wave breaking results in an increase in the upper-layer wave generation and a reduction in the vertical phase tilt. This change in the phase tilt has a substantial impact on the Ekman pumping, as it weakens the damping on the lower-layer wave for some parameter settings and enables the Ekman pumping to serve as a source of wave growth at other settings. Together, these processes can account for the O(1)-amplitude wave equilibration. From a potential vorticity (PV) perspective, the wave breaking reduces the meridional scale of the upper-layer eddy PV flux, which destabilizes the mean flow. This is followed by a strengthening of the lower-layer eddy PV flux, which weakens the lower-layer PV gradient and constrains the growth of the lower-layer eddy PV. The same jetward wave breaking focuses the upper-layer PV flux toward the jet center where the upper-layer PV gradient is greatest. This results in an intensification of the upper-layer eddy PV relative to lower-layer eddy PV. Because of this large ratio, the upper-layer eddy PV plays the primary role in inducing the upper- and lower-layer eddy streamfunction fields, decreasing the vertical phase tilt. As a result, the Ekman pumping on the eddies is weakened, and for some parameter settings the Ekman pumping can even act as a wave source, contributing toward O(1)-amplitude wave equilibration. By reducing the horizontal shear of the zonal wind, the same wave breaking process weakens the barotropic decay, which also contributes to the wave amplification.


2018 ◽  
Vol 146 (12) ◽  
pp. 4099-4114 ◽  
Author(s):  
Paolo Ghinassi ◽  
Georgios Fragkoulidis ◽  
Volkmar Wirth

AbstractUpper-tropospheric Rossby wave packets (RWPs) are important dynamical features, because they are often associated with weather systems and sometimes act as precursors to high-impact weather. The present work introduces a novel diagnostic to identify RWPs and to quantify their amplitude. It is based on the local finite-amplitude wave activity (LWA) of Huang and Nakamura, which is generalized to the primitive equations in isentropic coordinates. The new diagnostic is applied to a specific episode containing large-amplitude RWPs and compared with a more traditional diagnostic based on the envelope of the meridional wind. In this case, LWA provides a more coherent picture of the RWPs and their zonal propagation. This difference in performance is demonstrated more explicitly in the framework of an idealized barotropic model simulation, where LWA is able to follow an RWP into its fully nonlinear stage, including cutoff formation and wave breaking, while the envelope diagnostic yields reduced amplitudes in such situations.


1997 ◽  
Vol 102 (5) ◽  
pp. 3079-3079
Author(s):  
Gene Czerwinski ◽  
Alex Voishvillo ◽  
Sergei Alexandrov ◽  
Alex Terekhov

2019 ◽  
Author(s):  
Wenxiu Sun ◽  
Peter Hess ◽  
Gang Chen ◽  
Simone Tilmes

Abstract. Local finite-amplitude wave activity (LWA) measures the waviness of the local flow. In this work we relate the anticyclonic part of LWA, AWA (Anticyclonic Wave Activity), to surface ozone in summertime over the U.S. on interannual to decadal scales. Interannual covariance between AWA diagnosed from the European Centre for Medium-Range Weather Forecast Era-Interim reanalysis and ozone measured at EPA Clean Air Status and Trends Network (CASTNET) stations are analyzed using Maximum Covariance Analysis (MCA). The first two modes in the MCA analysis explain 84 % of the covariance between the AWA and MDA8 (Maximum Daily 8h-Average ozone). Over most of the U.S. we find a significant relationship between ozone at any specific location and AWA over the analysis domain (24° N–53° N, and 130° W–65° W) using a linear regression model. This relationship is diagnosed (i) using reanalysis meteorology and measured ozone from CASTNET, or (ii) using meteorology and ozone simulated by the Community Atmospheric Model version 4 with chemistry (CAM4-chem) within the Community Earth System Model (CESM1). Using the linear regression model we find that meteorological biases in AWA in CAM4-chem, as compared to the reanalysis meteorology, induces ozone changes between −4 and +8 ppb in CAM4-chem. Future changes (circa 2100) in AWA are diagnosed in four different climate change simulations in CAM4-chem, simulations which differ in their initial conditions and in one case in their reactive species emissions. All future simulations have enhanced AWA over the U.S., with the maximum enhancement in the southwest. As diagnosed using the linear regression model the future change in AWA is predicted to cause a corresponding change in ozone ranging up to 6 ppb. The location of this change depends on subtle features of the change in AWA. In many locations this change explains the magnitude and the sign of the overall simulated future ozone change.


Sign in / Sign up

Export Citation Format

Share Document