monosiga brevicollis
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 4)

H-INDEX

10
(FIVE YEARS 0)

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 6034
Author(s):  
Haley A. Wofford ◽  
Josh Myers-Dean ◽  
Brandon A. Vogel ◽  
Kevin Alexander Estrada Alamo ◽  
Frederick A. Longshore-Neate ◽  
...  

Choanoflagellates are single-celled eukaryotes with complex signaling pathways. They are considered the closest non-metazoan ancestors to mammals and other metazoans and form multicellular-like states called rosettes. The choanoflagellate Monosiga brevicollis contains over 150 PDZ domains, an important peptide-binding domain in all three domains of life (Archaea, Bacteria, and Eukarya). Therefore, an understanding of PDZ domain signaling pathways in choanoflagellates may provide insight into the origins of multicellularity. PDZ domains recognize the C-terminus of target proteins and regulate signaling and trafficking pathways, as well as cellular adhesion. Here, we developed a computational software suite, Domain Analysis and Motif Matcher (DAMM), that analyzes peptide-binding cleft sequence identity as compared with human PDZ domains and that can be used in combination with literature searches of known human PDZ-interacting sequences to predict target specificity in choanoflagellate PDZ domains. We used this program, protein biochemistry, fluorescence polarization, and structural analyses to characterize the specificity of A9UPE9_MONBE, a M. brevicollis PDZ domain-containing protein with no homology to any metazoan protein, finding that its PDZ domain is most similar to those of the DLG family. We then identified two endogenous sequences that bind A9UPE9 PDZ with <100 μM affinity, a value commonly considered the threshold for cellular PDZ–peptide interactions. Taken together, this approach can be used to predict cellular targets of previously uncharacterized PDZ domains in choanoflagellates and other organisms. Our data contribute to investigations into choanoflagellate signaling and how it informs metazoan evolution.


Author(s):  
Haley A. Wofford ◽  
Josh Myers-Dean ◽  
Brandon A. Vogel ◽  
Kevin Alexander Estrada Alamo ◽  
Frederick A. Longshore-Neate ◽  
...  

Choanoflagellates are single-celled eukaryotes with complex signaling pathways. They are considered the closest non-metazoan ancestors to mammals and other metazoans, and form multicellular-like states called rosettes. The choanoflagellate Monosiga brevicollis contains over 150 PDZ domains, an important peptide-binding domain in all three domains of life (Archaea, Bacteria, and Eukarya). Therefore, an understanding of PDZ domain signaling pathways in choanoflagellates may provide insight into the origins of multicellularity. PDZ domains recognize the C-terminus of target proteins and regulate signaling and trafficking pathways, as well as cellular adhesion. Here, we developed a computational program, Domain Analysis and Motif Matcher (DAMM), that predicts target specificity in choanoflagellate PDZ domains by analyzing peptide-binding cleft sequence identity as compared to human PDZ domains. We used this program, protein biochemistry, fluorescence polarization, and structural analyses to characterize the specificity of A9UPE9_MONBE, a M. brevicollis PDZ domain-containing protein with no homology to any metazoan protein, finding that its PDZ domain is most similar to those of the DLG family. We then identified two endogenous sequences that bind A9UPE9 PDZ with &amp;lt;100 M affinity, a value commonly considered the threshold for cellular PDZ-peptide interactions. Taken together, this approach can be used to predict cellular targets of previously uncharacterized PDZ domains in choanoflagellates and other organisms. Our data contributes to investigations into choanoflagellate signaling and how it informs metazoan evolution.


2020 ◽  
Vol 29 (11) ◽  
pp. 2226-2244
Author(s):  
Melody Gao ◽  
Iain G. P. Mackley ◽  
Samaneh Mesbahi‐Vasey ◽  
Haley A. Bamonte ◽  
Sarah A. Struyvenberg ◽  
...  

2020 ◽  
Author(s):  
Melody Gao ◽  
Iain G. P. Mackley ◽  
Samaneh Mesbahi-Vasey ◽  
Haley A. Bamonte ◽  
Sarah A. Struyvenberg ◽  
...  

AbstractThe evolution of signaling pathways is complex and well-studied. In particular, the emergence of animal multicellularity had a major impact on protein-protein interactions and signaling systems in eukaryotic cells. However, choanoflagellates, our closest non-metazoan ancestor, contain a number of closely related signaling and trafficking proteins and domains. In addition, because choanoflagellates can adopt a rosette-/multicellular-like state, a lot can be gained by comparing proteins involved in choanoflagellate and human signaling pathways. Here, we look at how selectivity determinants evolved in the PDZ domain. There are over 250 PDZ domains in the human proteome, which are involved in critical protein-protein interactions that result in large multimolecular complexes, e.g., in the postsynaptic density of neuronal synapses. Binding of C-terminal sequences by PDZ domains is often transient and recognition typically involves 6 residues or less, with only 2 residues specifying the binding motif. We solved high resolution crystal structures of Monosiga brevicollis PDZ domains homologous to human Dlg1 PDZ2, Dlg1 PDZ3, GIPC, and SHANK1 PDZ domains to investigate if the non-motif preferences are conserved, despite hundreds of millions of years of evolution. We also calculated binding affinities for GIPC, SHANK1, and SNX27 PDZ domains from M. brevicollis. Overall, we found that peptide selectivity is conserved between these two disparate organisms, with one exception, mbDLG-3. In addition, we identify 178 PDZ domains in the M. brevicollis proteome, including 11 new sequences, which we verified using Rosetta and homology modeling. Overall, our results provide novel insight into signaling pathways in the choanoflagellate organism.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
David López-Escardó ◽  
Xavier Grau-Bové ◽  
Amy Guillaumet-Adkins ◽  
Marta Gut ◽  
Michael E. Sieracki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document