intracellular ions
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 4)

H-INDEX

15
(FIVE YEARS 0)

Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 92
Author(s):  
Zhiling Tang ◽  
Haiming Chen ◽  
Ming Zhang ◽  
Zhuye Fan ◽  
Qiuping Zhong ◽  
...  

Pseudomonas lundensis is the main bacterium responsible for meat spoilage and its control is of great significance. 3-Carene, a natural monoterpene, has been proved to possess antimicrobial activities. This study aimed to investigate the antibacterial activity and mechanism of 3-carene against the meat spoilage bacterium P. lundensis, and explore its application on pork. After 3-carene treatment, cellular structural changes were observed. Cell walls and membranes were destroyed, resulting in the leakage of alkaline phosphatase and cellular contents. The decreased activity of Ca2+-Mg2+-ATPase and Na+-K+-ATPase showed the imbalance of intracellular ions. Subsequently, adenosine triphosphate (ATP) content and oxidative respiratory metabolism characteristics indicated that 3-carene inhibited the metabolism of the tricarboxylic acid cycle in P. lundensis. The results of binding 3-carene with the vital proteins (MurA, OmpW, and AtpD) related to the formation of the cell wall, the composition of the cell membrane, and the synthesis of ATP further suggested that 3-carene possibly affected the normal function of those proteins. In addition, the growth of P. lundensis and increase in pH were inhibited in pork during the 5 days of cold storage after the samples were pre-treated with 3-carene. These results show the anti-P. lundensis activity and mechanism of 3-carene, and its potential use in meat preservation under refrigerated conditions.



2021 ◽  
Vol 22 (24) ◽  
pp. 13601
Author(s):  
Daria Ponomareva ◽  
Elena Petukhova ◽  
Piotr Bregestovski

Optosensorics is the direction of research possessing the possibility of non-invasive monitoring of the concentration of intracellular ions or activity of intracellular components using specific biosensors. In recent years, genetically encoded proteins have been used as effective optosensory means. These probes possess fluorophore groups capable of changing fluorescence when interacting with certain ions or molecules. For monitoring of intracellular concentrations of chloride ([Cl−]i) and hydrogen ([H+] i) the construct, called ClopHensor, which consists of a H+- and Cl−-sensitive variant of the enhanced green fluorescent protein (E2GFP) fused with a monomeric red fluorescent protein (mDsRed) has been proposed [1]. We recently developed a line of transgenic mice expressing ClopHensor in neurons and obtained the map of its expression in different areas of the brain [2]. The purpose of this study was to examine the effectiveness of transgenic mice expressing ClopHensor for estimation of [H+]i and [Cl−]i concentrations in neurons of brain slices. We performed simultaneous monitoring of [H+]i and [Cl−]i under different experimental conditions including changing of external concentrations of ions (Ca2+, Cl−, K+, Na+) and synaptic stimulation of Shaffer’s collaterals of hippocampal slices. The results obtained illuminate different pathways of regulation of Cl− and pH equilibrium in neurons and demonstrate that transgenic mice expressing ClopHensor represent a reliable tool for non-invasive simultaneous monitoring of intracellular Cl− and pH.



Author(s):  
Dmitry V Zaretsky ◽  
Maria V Zaretskaia

In this manuscript, we reassess the data on beta-amyloid-induced changes of intracellular ions concentrations published previously by Abramov et al. (2003, 2004). Their observations made using high-resolution confocal microscopy with fast temporal resolution of images formed by fluorescent ion-sensitive fluorescent probes in living cells represent an unequivocal support for the amyloid channel theory. However, closer look reveals multiple facts which cannot be explained by channel formation in plasma membrane. Recently proposed amyloid degradation toxicity hypothesis provides the interpretation to these facts by considering that channels are formed in the lysosomal membranes.



Author(s):  
Jing Wang ◽  
Ting Sheng ◽  
Xiaohui Zhu ◽  
Qin Li ◽  
Yihan Wu ◽  
...  

In this review, we summarize the recent progress in the spectral engineering of UCNPs and highlight the biosensing application of UCNPs in intracellular ions, biomolecules and physiological environment.



2020 ◽  
Vol 152 (12) ◽  
Author(s):  
Dylan J. Meyer ◽  
Sharan Bijlani ◽  
Marilina de Sautu ◽  
Kerri Spontarelli ◽  
Victoria C. Young ◽  
...  

Tight regulation of the Na/K pump is essential for cellular function because this heteromeric protein builds and maintains the electrochemical gradients for Na+ and K+ that energize electrical signaling and secondary active transport. We studied the regulation of the ubiquitous human α1β1 pump isoform by five human FXYD proteins normally located in muscle, kidney, and neurons. The function of Na/K pump α1β1 expressed in Xenopus oocytes with or without FXYD isoforms was evaluated using two-electrode voltage clamp and patch clamp. Through evaluation of the partial reactions in the absence of K+ but presence of Na+ in the external milieu, we demonstrate that each FXYD subunit alters the equilibrium between E1P(3Na) and E2P, the phosphorylated conformations with Na+ occluded and free from Na+, respectively, thereby altering the apparent affinity for Na+. This modification of Na+ interaction shapes the small effects of FXYD proteins on the apparent affinity for external K+ at physiological Na+. FXYD6 distinctively accelerated both the Na+-deocclusion and the pump-turnover rates. All FXYD isoforms altered the apparent affinity for intracellular Na+ in patches, an effect that was observed only in the presence of intracellular K+. Therefore, FXYD proteins alter the selectivity of the pump for intracellular ions, an effect that could be due to the altered equilibrium between E1 and E2, the two major pump conformations, and/or to small changes in ion affinities that are exacerbated when both ions are present. Lastly, we observed a drastic reduction of Na/K pump surface expression when it was coexpressed with FXYD1 or FXYD6, with the former being relieved by injection of PKA's catalytic subunit into the oocyte. Our results indicate that a prominent effect of FXYD1 and FXYD6, and plausibly other FXYDs, is the regulation of Na/K pump trafficking.



2020 ◽  
Vol 21 (17) ◽  
pp. 5996
Author(s):  
Peter Illes

ATP is a (co)transmitter and signaling molecule in the CNS. It acts at a multitude of ligand-gated cationic channels termed P2X to induce rapid depolarization of the cell membrane. Within this receptor-channel family, the P2X7 receptor (R) allows the transmembrane fluxes of Na+, Ca2+, and K+, but also allows the slow permeation of larger organic molecules. This is supposed to cause necrosis by excessive Ca2+ influx, as well as depletion of intracellular ions and metabolites. Cell death may also occur by apoptosis due to the activation of the caspase enzymatic cascade. Because P2X7Rs are localized in the CNS preferentially on microglia, but also at a lower density on neuroglia (astrocytes, oligodendrocytes) the stimulation of this receptor leads to the release of neurodegeneration-inducing bioactive molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen and nitrogen molecules, and the excitotoxic glutamate/ATP. Various neurodegenerative reactions of the brain/spinal cord following acute harmful events (mechanical CNS damage, ischemia, status epilepticus) or chronic neurodegenerative diseases (neuropathic pain, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis) lead to a massive release of ATP via the leaky plasma membrane of neural tissue. This causes cellular damage superimposed on the original consequences of neurodegeneration. Hence, blood-brain-barrier permeable pharmacological antagonists of P2X7Rs with excellent bioavailability are possible therapeutic agents for these diseases. The aim of this review article is to summarize our present state of knowledge on the involvement of P2X7R-mediated events in neurodegenerative illnesses endangering especially the life quality and duration of the aged human population.





2019 ◽  
Vol 151 (4) ◽  
pp. 407-416 ◽  
Author(s):  
Alan R. Kay ◽  
Mordecai P. Blaustein

All animal cells are surrounded by a flexible plasma membrane that is permeable to water and to small ions. Cells thus face a fundamental problem: the considerable tension that their membranes would experience if the osmotic influx of water, driven by the presence of impermeant intracellular ions, was left unopposed. The pivotal study that described the cell’s remedy for this impending osmotic catastrophe—the “pump-leak mechanism” (PLM)—was published in the Journal of General Physiology by Tosteson and Hoffman in 1960. Their work revealed how the sodium pump stabilizes cell volume by eliminating the osmotic gradient. Here we describe the mechanistic basis of the PLM, trace the history of its discovery, and place it into the context of our current understanding.



Author(s):  
Lawrence M. Resnick ◽  
Raj K. Gupta ◽  
Richard Z. Lewanczuk ◽  
Peter K. T. Pang ◽  
John H. Laragh


Sign in / Sign up

Export Citation Format

Share Document