membrane atpase
Recently Published Documents


TOTAL DOCUMENTS

382
(FIVE YEARS 8)

H-INDEX

51
(FIVE YEARS 1)

Proteomes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 39
Author(s):  
Yusuke Murashita ◽  
Takumi Nishiuchi ◽  
Shafiq Ur Rehman ◽  
Setsuko Komatsu

Plant-derived smoke solution enhances soybean root growth; however, its mechanism is not clearly understood. Subcellular proteomics techniques were used for underlying roles of plant-derived smoke solution on soybean root growth. The fractions of membrane and nucleus were purified and evaluated for purity. ATPase and histone were enriched in the fractions of membrane and nucleus, respectively. Principal component analysis of proteomic results indicated that the plant-derived smoke solution affected the proteins in the membrane and nucleus. The proteins in the membrane and nucleus mainly increased and decreased, respectively, by the treatment of plant-derived smoke solution compared with control. In the proteins in the plasma membrane, ATPase increased, which was confirmed by immunoblot analysis, and ATP contents increased through the treatment of plant-derived smoke solution. Additionally, although the nuclear proteins mainly decreased, the expression of RNA polymerase II was up-regulated through the treatment of plant-derived smoke solution. These results indicate that plant-derived smoke solution enhanced soybean root growth through the transcriptional promotion with RNA polymerase II expression and the energy production with ATPase accumulation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maike Cosse ◽  
Thorsten Seidel

Proton pumps create a proton motif force and thus, energize secondary active transport at the plasma nmembrane and endomembranes of the secretory pathway. In the plant cell, the dominant proton pumps are the plasma membrane ATPase, the vacuolar pyrophosphatase (V-PPase), and the vacuolar-type ATPase (V-ATPase). All these pumps act on the cytosolic pH by pumping protons into the lumen of compartments or into the apoplast. To maintain the typical pH and thus, the functionality of the cytosol, the activity of the pumps needs to be coordinated and adjusted to the actual needs. The cellular toolbox for a coordinated regulation comprises 14-3-3 proteins, phosphorylation events, ion concentrations, and redox-conditions. This review combines the knowledge on regulation of the different proton pumps and highlights possible coordination mechanisms.


2021 ◽  
Vol 10 ◽  
Author(s):  
Fan Zhang ◽  
Hao Shen ◽  
Yating Fu ◽  
Guanyu Yu ◽  
Fuao Cao ◽  
...  

Extracellular and/or intracellular manipulation of pH in tumor may have noticeable potential in cancer treatment. Although the assembly factor genes of V0 domain of the V-ATPase complex are required for intracellular pH homeostasis, their significance in colorectal cancer (CRC) remains largely unknown. Here, we used bioinformatics to identify the candidates from known assembly factor genes of the V0 domain, which were further evaluated by immunohistochemistry (IHC) in CRC and adjacent normal specimens from 661 patients. Univariate and multivariate Cox analyses were used to evaluate factors contributing to prognosis. The effects of variations in the expression of VMA21 on tumor growth were assessed in vitro and in vivo. Of five known assembly factors, only VMA21 showed differential expression between CRC and adjacent normal tissues at both mRNA and protein levels. Patients with high VMA21 expression had higher differentiation grade and longer disease-specific survival (DSS) at stages I–III disease. High VMA21 expression in tumors was also an independent predictor of DSS (hazard ratio, 0.345; 95% confidence interval, 0.123–0.976), with covariates included TNM stage and differentiation grade. VMA21 overexpression decreased CRC growth, whereas VMA21 knockdown increased CRC growth in vitro and in vivo. VMA21 expression suppresses CRC growth and predicts a favorable DSS in patients with stage I-III disease.


Plant Disease ◽  
2021 ◽  
Author(s):  
Joseph DeShields ◽  
Achala KC

In a recent survey of postharvest rot pathogens in European pear in Southern Oregon, Alternaria spp. were frequently isolated from orchard samples of pear flowers and fruits. Morphological differences were observed within the isolated cultures. A preliminary NCBI BLAST search analysis using sequences of the ATPase locus across 94 isolates of Alternaria spp. obtained from pear fruit rots, revealed three major Alternaria sections, sect. Alternata, sect. Infectoriae, and sect. Ulocladioides. Thirteen isolates were selected based on their genetic and morphological diversity across three Alternaria sections and were subjected to multilocus phylogenetic analysis using sequences from plasma membrane ATPase, calmodulin, and Alt a1 loci. Within section Alternata, four A. arborescens isolates and one A. destruens isolate were identified; within sections Infectoriae and Ulocladioides, one A. rosae isolate and two A. botrytis isolates were identified, respectively. The remaining five isolates could not be identified based on the available sequences for the three loci used in this study. In addition to the phylogenetic analysis, pathogenicity assays revealed differential responses to these isolates on four pear cultivars Anjou, Bartlett, Comice, and Bosc. Inoculation of isolates within Alternaria sect. Alternata resulted in fruit lesions across all cultivars with Bosc being significantly susceptible (p<0.0001). Isolates within Alternaria sect. Ulocladioides caused rots on Anjou and Bosc, while isolates within Alternaria sect. Infectoriae developed rots on Bosc only. This study suggests that there is differential susceptibility of pear cultivars to Alternaria rots and the severity of postharvest rot depends on the type of Alternaria spp. and cultivar predominant in a region.


2020 ◽  
Vol 244 ◽  
pp. 153090 ◽  
Author(s):  
Iwona Sadura ◽  
Marta Libik-Konieczny ◽  
Barbara Jurczyk ◽  
Damian Gruszka ◽  
Anna Janeczko

Toxicon ◽  
2019 ◽  
Vol 159 ◽  
pp. S30-S31
Author(s):  
G.R. Kirakosyan ◽  
H.H. Tadevosyan ◽  
L.A. Ghulikyan ◽  
G.V. Ghukasyan ◽  
N.M. Ayvazyan
Keyword(s):  

Plant Disease ◽  
2018 ◽  
Vol 102 (11) ◽  
pp. 2158-2169 ◽  
Author(s):  
Karina Elfar ◽  
Juan P. Zoffoli ◽  
Bernardo A. Latorre

Moldy core (MC) of apple is an important disease in Chile, with prevalence observed between 4 and 46% in Fuji, Oregon Spur Red Chief, and Scarlet apple in the 2014–15 and 2015–16 growing seasons. However, there is no information on the identity of the causal agents associated with MC in Chile. The analysis of 653 MC fruit revealed the presence of several genera of filamentous fungi. However, species of Alternaria (67.7%) were by far the most frequently fungi isolated. In total, 41 Alternaria isolates were characterized morphologically and molecularly using Alternaria major allergen Alt a1, calmodulin, and plasma membrane ATPase gene regions. Six small-spored Alternaria spp. were identified; namely, in order of importance, Alternaria tenuissima, A. arborescens, A. alternata, and A. dumosa in sect. Alternaria; A. frumenti in sect. Infectoriae; and A. kordkuyana in sect. Pseudoalternaria. MC symptoms were reproducible and consisted of a light gray to dark olive-green mycelium over the carpel and seed of immature and mature fruit, confirming that the isolates of these Alternaria spp. were pathogenic. These isolates caused brown necrotic lesions with concentric rings on wounded detached apple leaves. This study demonstrated that at least six Alternaria spp. are the cause of MC of apple in Chile. These Alternaria spp. were isolated alone, or with two or more species coexisting in the same fruit. This is the first report of A. tenuissima, A. arborescens, A. frumenti, A. dumosa, and A. kordkuyana associated with MC of apple in Chile and the first report of A. frumenti, A. kordkuyana, and A. dumosa causing MC of apple worldwide.


Sign in / Sign up

Export Citation Format

Share Document