jack hills
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 19)

H-INDEX

28
(FIVE YEARS 3)

Geology ◽  
2021 ◽  
Author(s):  
Anastassia Y. Borisova ◽  
Anne Nédélec ◽  
Nail R. Zagrtdenov ◽  
Michael J. Toplis ◽  
Wendy A. Bohrson ◽  
...  

Hadean zircons, from the Jack Hills (Western Australia) and other localities, are currently the only window into the earliest terrestrial felsic crust, the formation of which remains enigmatic. Based upon new experimental results, generation of such early crust has been hypothesized to involve the partial melting of hydrated peridotite interacting with basaltic melt at low pressure (<10 km), but it has yet to be demonstrated that such liquids can indeed crystallize zircons comparable to Jack Hills zircon. We used thermodynamic and geochemical modeling to test this hypothesis. The predicted zircon saturation temperatures of <750 °C, together with the model zircon Th, U, Nb, Hf, Y, and rare earth element (REE) contents at 700 °C, δ18OVSMOW (Vienna standard mean ocean water) signatures, and co-crystallizing mineral assemblage were compared to those of the Jack Hills zircon. This comparison was favorable with respect to crystallization temperature, most trace-element contents, and mineral inclusions in zircon. The discrepancy in δ18OVSMOW signatures may be explained by hotter conditions of Hadean protocrust hydration. Our work supports the idea that felsic magma generation at shallow depths involving a primordial weathered ultramafic protocrust and local basaltic intrusions is indeed a viable mechanism for the formation of felsic crust on early Earth.


2021 ◽  
Author(s):  
Jasper Huijsmans ◽  
Maartje Hamers ◽  
Martyn Drury ◽  
Jim Lee

<p>Uranium-lead dating of zircon has been used extensively in geochronological studies based on the widespread occurrence of zircon and its resistance to chemical and physical weathering. Previous research has shown that despite their apparent robustness, many zircons contain evidence for recrystallisation, such as the replacement of the primary oscillatory zoning by unzoned zircon. This replacement is characterised by rims, patches and embayments of unzoned zircon which can either completely replace the primary zoning or preserve faint remnants within the unzoned zircon.  In some samples, the unzoned zircon contains lower U and Pb concentrations, implying that the zircon U-Pb age may be reset during the replacement (Pidgeon, 1992). Interestingly, zircons have also been found in which there is no apparent difference in U-Pb age between the zoned and unzoned zircon (Schaltegger et al., 1999). To better understand the replacement of zoned by unzoned zircon, it is important to study the microstructures present within recrystallised zircon to understand possible mechanisms causing recrystallisation. Multiple mechanisms may explain the trace element distribution within (partially) recrystallised zircon: annealing of radiation damaged (metamict) zircon, annealing of lattice strain imposed by alternating U concentrations in oscillatory zoning, enhanced diffusion along fast-diffusivity pathways (such as low-angle subgrain boundaries or fractures) and coupled dissolution-reprecipitation.  The mechanism(s) by which zircons recrystallise remain poorly understood, as well as the effect of the formation of different microstructures on corresponding zircon U-Pb dates. Understanding these phenomena is therefore of vital importance for correctly interpreting U-Pb ages in zircon.</p><p>This work focusses on investigating the microstructures that are present within recrystallised zircons from both metamorphic and igneous environments from the Jack Hills, Australia (Pidgeon, 1992) and the island of Lewis and Harris, Scotland (Van  Breemen  et  al.   1971). Suites of zircons from these areas have been imaged with cathodoluminescence, which is a powerful tool for obtaining high resolution images of the internal structures of zircons. Within these suites, zircons are present which show complex zoning patterns and (partial) recrystallisation; these will be studied in greater detail using EDS, EBSD and SHRIMP. Preliminary results of EDS on the inclusions show that inclusions are composed of feldspars, thorite, quartz and apatite, which were most likely included during the primary crystallisation of the zircon. EBSD measurements will provide additional data on the crystallographic orientation of recrystallized zones and the state of metamictization of the zircons, and may show if zircon has deformed crystal-plastically forming subgrain boundaries.</p><p><strong> </strong></p><p><strong>References</strong></p><p>Pidgeon, R. T. (1992). Recrystallisation of oscillatory zoned zircon: some geochronological and petrological implications. Contributions to Mineralogy and Petrology, 110(4), 463-472.</p><p>Schaltegger, U., Fanning, C. M., Günther, D., Maurin, J. C., Schulmann, K., & Gebauer, D. (1999). Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contributions to Mineralogy and Petrology, 134(2-3), 186-201.</p><p>Van Breemen, O., Aftalion, M., & Pidgeon, R. (1971). The age of the granitic injection complex of harris,outer hebrides.Scottish Journal of Geology,7(2), 139–152.</p>


2021 ◽  
Vol 118 (8) ◽  
pp. e2004370118 ◽  
Author(s):  
Nadja Drabon ◽  
Benjamin L. Byerly ◽  
Gary R. Byerly ◽  
Joseph L. Wooden ◽  
C. Brenhin Keller ◽  
...  

The nature of Earth’s earliest crust and the processes by which it formed remain major issues in Precambrian geology. Due to the absence of a rock record older than ∼4.02 Ga, the only direct record of the Hadean is from rare detrital zircon and that largely from a single area: the Jack Hills and Mount Narryer region of Western Australia. Here, we report on the geochemistry of Hadean detrital zircons as old as 4.15 Ga from the newly discovered Green Sandstone Bed in the Barberton greenstone belt, South Africa. We demonstrate that the U-Nb-Sc-Yb systematics of the majority of these Hadean zircons show a mantle affinity as seen in zircon from modern plume-type mantle environments and do not resemble zircon from modern continental or oceanic arcs. The zircon trace element compositions furthermore suggest magma compositions ranging from higher temperature, primitive to lower temperature, and more evolved tonalite-trondhjemite-granodiorite (TTG)-like magmas that experienced some reworking of hydrated crust. We propose that the Hadean parental magmas of the Green Sandstone Bed zircons formed from remelting of mafic, mantle-derived crust that experienced some hydrous input during melting but not from the processes seen in modern arc magmatism.


2020 ◽  
Vol 6 (15) ◽  
pp. eaav9634 ◽  
Author(s):  
Cauê S. Borlina ◽  
Benjamin P. Weiss ◽  
Eduardo A. Lima ◽  
Fengzai Tang ◽  
Richard J. M. Taylor ◽  
...  

The time of origin of the geodynamo has important implications for the thermal evolution of the planetary interior and the habitability of early Earth. It has been proposed that detrital zircon grains from Jack Hills, Western Australia, provide evidence for an active geodynamo as early as 4.2 billion years (Ga) ago. However, our combined paleomagnetic, geochemical, and mineralogical studies on Jack Hills zircons indicate that most have poor magnetic recording properties and secondary magnetization carriers that postdate the formation of the zircons. Therefore, the existence of the geodynamo before 3.5 Ga ago remains unknown.


2020 ◽  
Author(s):  
John Tarduno ◽  
Rory Cottrell ◽  
Axel Hofmann

<p>Understanding the pre-Paleoarchean geodynamo is arguably the greatest technical challenge for paleomagnetism: only silicate crystals bearing magnetic inclusions now found in younger sedimentary units may have escaped the metamorphism that otherwise excludes extant Paleoarchean to Hadean whole rocks from consideration. The recent optical and electron microscope documentation of primary magnetite inclusions in Jack Hills zircons (Tarduno et al., <em>PNAS</em>, 2020), previously predicted by paleomagnetic unblocking temperatures, together with microconglomerate test results, Pb-Pb radiometric age data and Li-diffusion constraints, support a geodynamo as old as 4.2 billion-years-old. While the available record is to first-order consistent with a continuous geodynamo since the Hadean, there are several 50-100 m.y. gaps in the record. Herein we examine these gaps and further test the paleointensity history derived from Jack Hills zircons through study of Paleoarchean and older detrital zircons of the Singhbum craton of eastern India. Preliminary paleomagnetic and paleointensity data suggest the presence of a primary magnetism, magnetite inclusion carriers and field strengths similar to those of the Jack Hills record.</p>


2020 ◽  
Author(s):  
Ross N. Mitchell ◽  
Christopher J. Spencer ◽  
Uwe Kirscher ◽  
Simon A. Wilde

<p><strong>Earth’s oldest preserved crustal archive, the Jack Hills zircon of Western Australia, has been controversial to interpret in terms of the onset of plate tectonics. Here we conduct time series analysis on hafnium isotopes of the Jack Hills zircon and reveal an array of statistically significant cycles that are reminiscent of plate tectonics, i.e., subduction. At face value, such cycles may suggest early Earth conditions similar to today—the uniformitarian “day one” hypothesis. On the other hand, in the context of expected secular changes due to planetary evolution and geological observations, the cycles could instead imply that modern plate tectonic subduction inherited convective harmonics already facilitated by an early phase of stagnant-lid delamination—the “lid-to-plates” hypothesis. Either way, any model for the initiation of plate tectonics must begin in Hadean time.</strong></p>


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Simon Turner ◽  
Simon Wilde ◽  
Gerhard Wörner ◽  
Bruce Schaefer ◽  
Yi-Jen Lai
Keyword(s):  

2020 ◽  
Vol 531 ◽  
pp. 115975 ◽  
Author(s):  
Jesse R. Reimink ◽  
Joshua H.F.L. Davies ◽  
Ann M. Bauer ◽  
Thomas Chacko
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document