indian meal moth
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 17)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Hongmin Liu ◽  
Yin Tang ◽  
Qinying Wang ◽  
Hongzhong Shi ◽  
Jian Yin ◽  
...  

Insect glutathione-S-transferases (GSTs) play essential roles in metabolizing endogenous and exogenous compounds. GSTs that are uniquely expressed in antennae are assumed to function as scavengers of pheromones and host volatiles in the odorant detection system. Based on this assumption, antennae-specific GSTs have been identified and functionally characterized in increasing number of insect species. In the present study, 17 putative GSTs were identified from the antennal transcriptomic dataset of the Indian meal moth, Plodia interpunctella, a severe stored-grain pest worldwide. Among the GSTs, only PiGSTd1 is antennae-specific according to both Fragments Per Kilobase Million (FPKM) and quantitative real-time PCR (qRT-PCR) analysis. Sequence analysis revealed that PiGSTd1 has a similar identity as many delta GSTs from other moths. Enzyme kinetic assays using 1-chloro-2,4-dinitrobenzene (CDNB) as substrates showed that the recombinant PiGSTd1 gave a Km of 0.2292 ± 0.01805 mM and a Vmax of 14.02 ± 0.2545 μmol·mg−1·min−1 under the optimal catalytic conditions (35°C and pH = 7.5). Further analysis revealed that the recombinant PiGSTd1 could efficiently degrade the sex pheromone component Z9-12:Ac (75.63 ± 5.52%), as well as aldehyde volatiles, including hexanal (89.10 ± 2.21%), heptanal (63.19 ± 5.36%), (E)-2-octenal (73.58 ± 3.92%), (E)-2-nonenal (75.81 ± 1.90%), and (E)-2-decenal (61.13 ± 5.24%). Taken together, our findings suggest that PiGSTd1 may play essential roles in degrading and inactivating a variety of odorants, especially sex pheromones and host volatiles of P. interpunctella.


2021 ◽  
Vol 60 ◽  
pp. 31-36
Author(s):  
Tuğba Sağlam ◽  
Mustafa Yaman ◽  
Ömer Ertürk

The Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae) is one of the most important stored product pests. Fumigation plays a significant role in the management of insect pests in stored-products. However, the use of fumigants is problematic because of their effects on the environment and high costs. Entomopathogenic organisms are environmentally friendly control agents and suppress pest populations under natural conditions. In this study, distribution and occurrence of a microsporidian pathogen, Vairimorpha plodiae (Opisthokonta: Microspora) in the populations of P. interpunctella from 12 localities representing Turkey between 2019 and 2020 are presented for the first time by confirming its effectiveness on natural populations. The presence of the microsporidian pathogen was found in 11 of 12 (91.7%) populations. In total, 863 of 3,044 samples were infected by the pathogen. Infection mean was 28.4% for all populations. Our results showed that V. plodiae infection reached to a considerably high prevalence (88.77%) in P. interpunctella populations and varied from 5.1 to 88.7% between the populations. In addition, microsporidia infections have been identified throughout Turkey. We found that V. plodiae can infect all life stages of P. interpunctella. Totally, 623 (28.5%) of 2187 larvae, 14 (37.8%) of 37 pupae, 226 (27%) of 820 adults were found to be infected by the pathogen. There were considerable differences between the dead and living larvae. The microsporidian infection was found in 26 (11.6%) of 225 living larvae, whereas it was found in 595 (30.5%) of 1,952 dead larvae. These results confirm that the microsporidia pathogen has a high spreading potential in P. interpunctella populations and can be a natural biological suppression factor on pest populations.


Insects ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Md Munir Mostafiz ◽  
Errol Hassan ◽  
Rajendra Acharya ◽  
Jae-Kyoung Shim ◽  
Kyeong-Yeoll Lee

The Indian meal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), is an insect pest that commonly affects stored and postharvest agricultural products. For the control of insect pests and mites, methyl benzoate (MBe) is lethal as a fumigant and also causes contact toxicity; although it has already been established as a food-safe natural product, the fumigation toxicity of MBe has yet to be demonstrated in P. interpunctella. Herein, we evaluated MBe as a potential fumigant for controlling adults of P. interpunctella in two bioassays. Compared to the monoterpenes examined under laboratory conditions, MBe demonstrated high fumigant activity using a 1-L glass bottle at 1 μL/L air within 4 h of exposure. The median lethal concentration (LC50) of MBe was 0.1 μL/L air; the median lethal time (LT50) of MBe at 0.1, 0.3, 0.5, and 1 μL/L air was 3.8, 3.3, 2.8, and 2.0 h, respectively. Compared with commercially available monoterpene compounds used in pest control, MBe showed the highest fumigant toxicity (toxicity order as follows): MBe > citronellal > linalool > 1,8 cineole > limonene. Moreover, in a larger space assay, MBe caused 100% mortality of P. interpunctella at 0.01 μL/cm3 of air after 24 h of exposure. Therefore, MBe can be recommended for use in food security programs as an ecofriendly alternative fumigant. Specifically, it provides another management tool for curtailing the loss of stored food commodities due to P. interpunctella infestation.


Insects ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 701 ◽  
Author(s):  
Leanage K. W. Wijayaratne ◽  
Charles S. Burks

The Indian meal moth Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), is controlled by commercial mating disruption dispensers using passive release to emit high concentrations (relative to females or monitoring lures) of their principal sex pheromone component, (9Z,12E)-tetradecadienyl acetate. Since P. interpunctella is sexually active throughout the scotophase, an assay system was developed to determine the importance of direct interaction of the male with the dispenser, and whether exposure to mating disruption early in the night is sufficient to suppress mating throughout the night. Exposure to mating disruption dispensers in the mating assay chamber for the first two hours of a 10-h scotophase significantly reduced mating when females were introduced four hours later. Mating was also reduced to a lesser degree in a concentration-dependent manner based solely on re-emission of pheromone, and when males were exposed outside the mating assay chamber. These results indicate that the commercial mating disruption dispensers can suppress mating throughout the night based on interaction with the dispenser early in the night. Desensitization resulting from attraction to a high-concentration pheromone source is important to this suppression, but other factors such as re-emission from the environment may also have a role. These observations imply a non-competitive mechanism for P. interpunctella with the product studied, and suggest that effectiveness of the mating disruption dispenser might be augmented by using them in conjunction with another formulation such as an aerosol or micro-encapsulated product.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Md. Mahbub Hasan ◽  
Sayla Aktar Chowdhory ◽  
A. S. M. Shafiqur Rahman ◽  
Christos G. Athanassiou

Abstract Diapause concerns the fascinating phenomenon in the biology of insect development which allows better understanding the local adaptation and phenotypic plasticity to seasonal variations in environment. There is lot of reasons to carry out the research on diapause both for fundamental and applied sciences. Photoperiod is one of the main environmental cues followed by insects to predict the forthcoming seasonal changes and to adapt these changes in their life-history traits. Thus, the effect of different photoperiod regimes on development and diapause induction of larvae of the Indian meal moth Plodia interpunctella (Hübner) was evaluated at a constant temperature of 17 °C. Development was significantly faster at a photoperiod of 12:12 light:darkness (L:D) than at 8:16, 10:14, 14:10 and 16:8 L:D. A photoperiod of 12:12 (L:D) induced most larvae (≥ 71%) to enter diapause, while this percentage was slightly lower (60%) at both shorter(8 h) and longer (16 h) day lengths (50%). The different photoperiod regimes did not affect the percentage of adult emergence. Fat and protein composition of the diapausing larvae differed significantly among treatments as well as between diapausing and non-diapausing larvae. Larvae developing from 8:16 (L:D) contained the maximum amount of protein (36.8%) compared to other regimes, while the minimum amount (21.0%) was noted in larvae that developed at 16:8 (L:D). Six types of fatty acids were detected in the larvae: myristic acid (methyl tetradecenoate), palmitoleic acid (9-hexadecenoic acid, methyl ester), palmitic acid (hexadecenoic acid, methyl ester), linoleic acid (9, 12-Octadecadienoic acid (Z, Z), methyl ester), oleic acid [9-octadecenoic acid, methyl ester (E)] and stearic acid (octadecanoic acid, methyl ester). The results also reveal that the percent of fatty acids detected in the diapausing larvae varies significantly and the same trends imply in the interaction of fatty acid and photoperiod regimes. Moreover, three quarters of the total variance was accounted for by the Principal Component Analysis (PCA) of the fatty acids. Different proportions of fatty acids were noted among treatments, suggesting that photoperiod influences a number of key biological traits in P. interpunctella, much more than the percentage of the diapausing larvae per se.


2020 ◽  
Vol 118 (10) ◽  
pp. 1609
Author(s):  
Olgica Stefanovic ◽  
Filip Vukajlovic ◽  
Tamara Mladenovic ◽  
Dragana Predojevic ◽  
Ljiljana Comic ◽  
...  

2020 ◽  
Vol 113 (3) ◽  
pp. 1535-1546 ◽  
Author(s):  
Er-Hu Chen ◽  
Ye-Xin Tao ◽  
Wei Song ◽  
Fei Shen ◽  
Ming-Long Yuan ◽  
...  

Abstract MicroRNAs (miRNAs) have been reported to play indispensable roles in regulating various developmental processes via the posttranscriptional repression of target genes in insect species. In the present paper, we studied the miRNAs in Indian meal moth (Plodia interpunctella (Hübener)), one of the most economically important stored grains pests around the world. In total, 12 small RNA libraries from four developmental stages of P. interpunctella were constructed, and 178 known and 23 novel miRNAs were identified. In addition, the expression profiles of these miRNAs were assessed across different developmental stages and miRNAs that were highly expressed in eggs, larvae, pupae, and adults were identified. Specifically, 100, 61, and 52 miRNAs were differentially expressed between eggs and larvae, larvae and pupae, and pupae and adults, respectively. The KEGG and GO analysis of the predicted target genes suggested the essential roles of miRNAs in the regulation of complex development of P. interpunctella. Importantly, we also found a set of miRNAs might be involved in the larval metamorphic molting process, with their expressions increasing and then decreasing during the larva-pupa-adult stages of P. interpunctella. In conclusion, the current paper has discovered numerous miRNAs, and some key miRNAs that might be responsible for regulating development in P. interpunctella. To our knowledge, this is the first study to document miRNAs and their expression patterns in interpunctella, and those findings would lay an important molecular foundation for future functional analysis of these miRNAs in P. interpunctella.


Sign in / Sign up

Export Citation Format

Share Document