platelet formation
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 28)

H-INDEX

36
(FIVE YEARS 2)

Author(s):  
Marina Leonidovna Kochieva

Normally, the number of platelets in a healthy adult is in the range of 150-320 x 10⁹. A condition in which their number falls below 150x10⁹ is called thrombocytopenia. It can be both associated with a violation of the process of platelet formation in the bone marrow (in particular, with aplastic anemia, hemoblastosis, thrombocytopenic purpura), and be a concomitant pathology, for example, be a consequence of drug treatment of a number of somatic diseases. In the pathogenesis of thrombocytopenia, three main directions are distinguished: a decrease in platelet production, an acceleration of their decay and a violation of the distribution of the platelet pool with their sequestration in the spleen. Most often, drug thrombocytopenia develops against the background of the use of cytostatics, chloramphenicol, antithyroid drugs, NSAIDs. The decrease in the number of platelets can also be influenced by the regular use of alcohol, some infectious diseases, and immunodeficiency states. The main clinical manifestation of thrombocytopenia is hemorrhagic syndrome, proceeding as petechial rashes or ecchymosis, however, in some cases, clinical manifestations may be absent, and then the diagnosis is made on the basis of a clinical blood test. Treatment of thrombocytopenia is carried out taking into account the etiological factor that caused it.


2021 ◽  
Author(s):  
Yujing Zhang ◽  
Pascal Benz ◽  
Daniel Stehle ◽  
Shang Yang ◽  
Hendrikje Kurz ◽  
...  

Cyclic guanosine monophosphate (cGMP) signalling plays a fundamental role in many cell types including platelets. cGMP has been implicated in platelet formation, but mechanistic detail about its spatiotemporal regulation in megakaryocytes (MKs) is lacking. We expressed a photo-activated guanylyl cyclase, Blastocladiella emersonii Cyclase opsin (BeCyclop), after viral-mediated gene transfer in bone marrow (BM)-derived MKs to precisely light-modulate cGMP levels. BeCyclop-MKs showed a significantly increased cGMP concentration after illumination, which was strongly dependent on phosphodiesterase (PDE) 5 activity. This finding was corroborated by real-time imaging of cGMP signals which revealed that pharmacological PDE5 inhibition also potentiated nitric oxide (NO) triggered cGMP generation in BM MKs. In summary, we established for the first time optogenetics in primary MKs and identified PDE5 as the predominant PDE regulating cGMP levels in MKs. These findings also demonstrate that optogenetics allows for the precise manipulation of MK biology.


Author(s):  
Lisann Pelzl ◽  
Anurag Singh ◽  
Jonas Funk ◽  
Andreas Witzemann ◽  
Irene Marini ◽  
...  
Keyword(s):  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3211-3211
Author(s):  
Christine Shu Mei Lee ◽  
Agnibesh Dey ◽  
Heather Campbell ◽  
Emmanuel J Favaloro ◽  
Lisa Clarke ◽  
...  

Abstract Background: Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a severe prothrombotic complication of adenoviral vaccines including ChAdOx1 nCoV-19 (AstraZeneca) vaccine. The putative mechanism involves formation of pathological anti-PF4 antibodies that activate platelets via the FcγRIIa receptor to drive thrombosis and the associated thrombocytopenia. Functional assays are important in the VITT diagnostic pathway as not all detectable PF4 antibodies are pathogenic. Detection of procoagulant platelets (platelets supporting thrombin generation) in presence of PF4 has been proposed as a diagnostic assay for VITT (Althaus et al). Procoagulant platelets are not typically generated in response to low level agonist stimulation; however, combination of ligand binding of G-protein coupled receptors (GPCR) (eg. PAR1) and ITAM linked receptors (eg. GPVI, CLEC2 and FcγRIIa) synergistically induce procoagulant platelet formation. Here, we describe an alternative flow cytometric assay to diagnose VITT. We hypothesized that priming of platelets with a PAR1 agonist at a level sufficient to release PF4, but insufficient to generate a significant procoagulant response in donor platelets, would provide a platform in which procoagulant response would be dependent on presence of FcγRIIa dependent procoagulant antibodies in patient plasma, without requirement for additional PF4. Methods: Our previously established flow cytometry-based procoagulant platelet assay (using cell death marker GSAO and P-selectin) was modified to incorporate exogenous patient plasma and performed on whole blood from healthy donors screened for FcγRIIa responsiveness (aggregation response to anti-CD9 antibody, ALB6), primed with 5 μM SFLLRN. The assay was performed on Australian patients referred for confirmatory VITT testing with probable VITT (confirmed thrombosis within 4-42 days of ChAdOx1 nCov-19 vaccination, D-Dimer > 5x ULN, platelets < 150 x 10 9/L or falling platelet count) after screening on PF4/heparin ELISA (Asserachrom HPIA IgG Assay, Stago Diagnostics). Procoagulant response was also measured in presence of 0.5 U/mL and 100 U/mL heparin, monoclonal FcγRIIa blocking antibody, IV.3, and intravenous immunoglobulin, IVIg. Some plasmas were incubated with ChAdOx1 nCoV-19 or SARS-CoV-2 spike protein. Flow cytometry positive patients were also tested by serotonin release assay (SRA) and multiplate aggregometry. Clinical correlation was obtained. Results: Citrated plasma from 49 unique patients with suspected VITT are reported. Plasma from ELISA+ve patients with clinical picture consistent with VITT (n=31), significantly increased the procoagulant platelet proportions in healthy donors in presence of 5 μM SFLLRN (p<0.0001, Figure 1A). This increase was not seen with plasma from healthy donors (n=14); or individuals exposed to ChAdOx1 nCov-19 vaccine without VITT: thrombocytopenic thrombosis patients who were ELISA-ve and SRA-ve (n=14); or low-level ELISA+ve patients without thrombocytopenia who were negative by either multiplate or SRA (n=4). The procoagulant platelet response induced by VITT positive plasma was reduced with low dose heparin (0.5 U/mL, p<0.01) except for 3 patients who showed a heparin-enhancing effect (Figure 1B). High dose heparin (100 U/mL, p<0.0001), IV.3 (10 µg/mL, p<0.0001) or IVIg (10 mg/mL, p<0.0001) abolished the procoagulant response (Figures 1C-D). The in vitro effect of IVIg was predictive of the in vivo response to IVIg therapy (Figure 1E). Addition of SARS-CoV-2 spike protein had no effect on the procoagulant platelet response. ChAdOx1 nCov-19 had an inconsistent effect on procoagulant platelet formation in presence of VITT plasma. Use of donors without a robust aggregation response to ALB6 resulted in false negative results. Conclusion: Induction of FcγRIIa dependent procoagulant response by patient plasma, suppressible by high dose heparin and IVIg, is highly indicative of VITT in the correct clinical circumstance. This assay modification of priming donor platelets from known FcγRIIa responsive donors with a GPCR agonist to potentiate the ITAM signaling from platelet activating immune complexes, results in a sensitive and specific assay. This may represent a functional platform that can be adopted into diagnostic laboratories to identify patients with platelet-activating antibodies and potentially predict treatment responses. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
pp. 126374
Author(s):  
Adam A. Wilson ◽  
Milena B. Graziano ◽  
Asher C. Leff ◽  
Brendan Hanrahan ◽  
David R. Baker ◽  
...  

2021 ◽  
Vol 22 (17) ◽  
pp. 9363
Author(s):  
Leanne R. O’Sullivan ◽  
Mary R. Cahill ◽  
Paul W. Young

The actin cytoskeleton plays a central role in platelet formation and function. Alpha-actinins (actinins) are actin filament crosslinking proteins that are prominently expressed in platelets and have been studied in relation to their role in platelet activation since the 1970s. However, within the past decade, several groups have described mutations in ACTN1/actinin-1 that cause congenital macrothrombocytopenia (CMTP)—accounting for approximately 5% of all cases of this condition. These findings are suggestive of potentially novel functions for actinins in platelet formation from megakaryocytes in the bone marrow and/or platelet maturation in circulation. Here, we review some recent insights into the well-known functions of actinins in platelet activation before considering possible roles for actinins in platelet formation that could explain their association with CMTP. We describe what is known about the consequences of CMTP-linked mutations on actinin-1 function at a molecular and cellular level and speculate how these changes might lead to the alterations in platelet count and morphology observed in CMTP patients. Finally, we outline some unanswered questions in this area and how they might be addressed in future studies.


Author(s):  
Hong Li ◽  
Xueqin Jiang ◽  
Xin Shen ◽  
Yueshan Sun ◽  
Nan Jiang ◽  
...  

Thrombocytopenia is closely linked with hemorrhagic diseases, for which induction of thrombopoiesis shows promise as an effective treatment. Polyphenols widely exist in plants and manifest antioxidation and antitumour activities. In this study, we investigated the thrombopoietic effect and mechanism of 3,3′,4′-trimethylellagic acid (TMEA, a polyphenol in Sanguisorba officinalis L.) using in silico prediction and experimental validation. A KEGG analysis indicated that PI3K/Akt signalling functioned as a crucial pathway. Furthermore, the virtual molecular docking results showed high-affinity binding (a docking score of 6.65) between TMEA and mTOR, suggesting that TMEA might target the mTOR protein to modulate signalling activity. After isolation of TMEA, in vitro and in vivo validation revealed that this compound could promote megakaryocyte differentiation/maturation and platelet formation. In addition, it enhanced the phosphorylation of PI3K, Akt, mTOR, and P70S6K and increased the expression of GATA-1 and NF-E2, which confirmed the mechanism prediction. In conclusion, our findings are the first to demonstrate that TMEA may provide a novel therapeutic strategy that relies on the PI3K/Akt/mTOR pathway to facilitate megakaryocyte differentiation and platelet production.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
G. J. Pennings ◽  
C. J. Reddel ◽  
M. Traini ◽  
H. Campbell ◽  
V. Chen ◽  
...  

AbstractColchicine inhibits coronary and cerebrovascular events in patients with coronary artery disease (CAD), and although known to have anti-inflammatory properties, its mechanisms of action are incompletely understood. In this study, we investigated the effects of colchicine on platelet activation with a particular focus on its effects on activation via the collagen glycoprotein (GP)VI receptor, P2Y12 receptor, and procoagulant platelet formation. Therapeutic concentrations of colchicine in vitro (equivalent to plasma levels) significantly decreased platelet aggregation in whole blood and in platelet rich plasma in response to collagen (multiplate aggregometry) and reduced reactive oxygen species (ROS) generation (H2DCF-DA, flow cytometry) in response to GPVI stimulation with collagen related peptide-XL (CRP-XL, GPVI specific agonist). Other platelet activation pathways including P-selectin expression, GPIIb/IIIa conformational change and procoagulant platelet formation (GSAO+/CD62P+) (flow cytometry) were inhibited with higher concentrations of colchicine known to inhibit microtubule depolymerization. Pathway specific mechanisms of action of colchicine on platelets, including modulation of the GPVI receptor pathway at low concentrations, may contribute to its protective role in CAD.


2021 ◽  
Vol 22 (10) ◽  
pp. 5405
Author(s):  
Natalia Rukoyatkina ◽  
Valentina Shpakova ◽  
Julia Sudnitsyna ◽  
Michael Panteleev ◽  
Stephanie Makhoul ◽  
...  

Curcumin is a natural bioactive component derived from the turmeric plant Curcuma longa, which exhibits a range of beneficial activities on human cells. Previously, an inhibitory effect of curcumin on platelets was demonstrated. However, it is unknown whether this inhibitory effect is due to platelet apoptosis or procoagulant platelet formation. In this study, curcumin did not activate caspase 3-dependent apoptosis of human platelets, but rather induced the formation of procoagulant platelets. Interestingly, curcumin at low concentration (5 µM) potentiated, and at high concentration (50 µM) inhibited ABT-737-induced platelet apoptosis, which was accompanied by inhibition of ABT-737-mediated thrombin generation. Platelet viability was not affected by curcumin at low concentration and was reduced by 17% at high concentration. Furthermore, curcumin-induced autophagy in human platelets via increased translocation of LC3I to LC3II, which was associated with activation of adenosine monophosphate (AMP) kinase and inhibition of protein kinase B activity. Because curcumin inhibits P-glycoprotein (P-gp) in cancer cells and contributes to overcoming multidrug resistance, we showed that curcumin similarly inhibited platelet P-gp activity. Our results revealed that the platelet inhibitory effect of curcumin is mediated by complex processes, including procoagulant platelet formation. Thus, curcumin may protect against or enhance caspase-dependent apoptosis in platelets under certain conditions.


Author(s):  
Anaïs Pongerard ◽  
Lea Mallo ◽  
Christian Gachet ◽  
Henri de La Salle ◽  
François Lanza ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document