fibroblast growth factor signaling
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 17)

H-INDEX

39
(FIVE YEARS 2)

2021 ◽  
Vol 18 ◽  
Author(s):  
Miao Chu ◽  
Huimiao Liu ◽  
Zhaohui Xiong ◽  
Chaojuan Ju ◽  
Lina Zhao ◽  
...  

Background: Parkinson’s disease (PD) is a neurodegenerative disorder caused by the progressive loss of dopaminergic neurons. Canopy fibroblast growth factor signaling regulator 2 (CNPY2) is down-regulated in this disease, but its functions are unknown. Objective: This study investigates the effects and regulation of CNPY2 in the apoptosis of neurons in PD. Methods: We established a PD model in vivo by a five consecutive days-injection of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to mice. In vitro, the human SH-SY5Y neuroblastoma cells, after differentiation, were treated with 1-Methyl-4-phenylpyridinium iodide (MPP+) for modeling. The cells were transfected with a recombinant vector overexpressing CNPY2 followed by MPP+ treatment. Expression of CNPY2 and proteins related to apoptosis was detected by real-time PCR, western blot, or immunofluorescence staining. The ROS level and mitochondrial membrane potential were determined by flow cytometry. Cell viability and apoptosis were measured by MTT assay and TUNEL staining. Results: CNPY2 level was down-regulated both in the brain and retina of PD mice and also inhibited in neurons by MPP+ in vitro. Overexpression of CNPY2 repressed the level of Bax and cleaved caspase-3, enhanced Bcl-2 level, and promoted neurite length under MPP+ treatment. CNPY2 overexpression reduced the accumulation of ROS and mitochondria dysfunction in neurons. The AKT/GSK3β signaling pathway was activated by overexpressed CNPY2 to inhibit MPP+-induced neuronal apoptosis, which was confirmed using an AKT inhibitor MK-2206 2HCl. Conclusion: CNPY2 alleviates oxidative stress, mitochondria dysfunction, and apoptosis of neurons induced by MPP+ by activating the AKT/ GSK3β signaling pathway


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Manon Destalminil-Letourneau ◽  
Ismaël Morin-Poulard ◽  
Yushun Tian ◽  
Nathalie Vanzo ◽  
Michele Crozatier

In adult mammals, hematopoiesis, the production of blood cells from hematopoietic stem and progenitor cells (HSPCs), is tightly regulated by extrinsic signals from the microenvironment called ‘niche’. Bone marrow HSPCs are heterogeneous and controlled by both endosteal and vascular niches. The Drosophila hematopoietic lymph gland is located along the cardiac tube which corresponds to the vascular system. In the lymph gland, the niche called Posterior Signaling Center controls only a subset of the heterogeneous hematopoietic progenitor population indicating that additional signals are necessary. Here we report that the vascular system acts as a second niche to control lymph gland homeostasis. The FGF ligand Branchless produced by vascular cells activates the FGF pathway in hematopoietic progenitors. By regulating intracellular calcium levels, FGF signaling maintains progenitor pools and prevents blood cell differentiation. This study reveals that two niches contribute to the control ofDrosophila blood cell homeostasis through their differential regulation of progenitors.


2020 ◽  
Author(s):  
Manon Destalminil-Letourneau ◽  
Ismaël Morin-Poulard ◽  
Yushun Tian ◽  
Nathalie Vanzo ◽  
Michèle Crozatier

AbstractIn adult mammals, hematopoiesis, the production of blood cells from hematopoietic stem and progenitor cells (HSPCs), is tightly regulated by extrinsic signals from the microenvironment called “niche”. Bone marrow HSPCs are heterogeneous and controlled by both endosteal and vascular niches. The Drosophila hematopoietic lymph gland is located along the cardiac tube which corresponds to the vascular system. In the lymph gland, the niche called Posterior Signaling Center controls only a subset of the heterogeneous hematopoietic progenitor population indicating that additional signals are necessary. Here we report that the vascular system acts as a second niche to control lymph gland homeostasis. The FGF ligand Branchless produced by vascular cells activates the FGF pathway in hematopoietic progenitors. By regulating intracellular calcium levels, FGF signaling maintains progenitor pools and prevents blood cell differentiation. This study reveals that two niches contribute to the control of Drosophila blood cell homeostasis through their differential regulation of progenitors.


Sign in / Sign up

Export Citation Format

Share Document