lymph gland
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 26)

H-INDEX

19
(FIVE YEARS 3)

Development ◽  
2021 ◽  
Vol 149 (8) ◽  
Author(s):  
Manisha Goyal ◽  
Ajay Tomar ◽  
Sukanya Madhwal ◽  
Tina Mukherjee

ABSTRACT The role of reactive oxygen species (ROS) in myeloid development is well established. However, its aberrant generation alters hematopoiesis. Thus, a comprehensive understanding of events controlling ROS homeostasis forms the central focus of this study. We show that, in homeostasis, myeloid-like blood progenitor cells of the Drosophila larvae, which reside in a specialized hematopoietic organ termed the lymph gland, use TCA to generate ROS. However, excessive ROS production leads to lymph gland growth retardation. Therefore, to moderate blood progenitor ROS, Drosophila larvae rely on olfaction and its downstream systemic GABA. GABA internalization and its breakdown into succinate by progenitor cells activates pyruvate dehydrogenase kinase (PDK), which controls inhibitory phosphorylation of pyruvate dehydrogenase (PDH). PDH is the rate-limiting enzyme that connects pyruvate to the TCA cycle and to oxidative phosphorylation. Thus, GABA metabolism via PDK activation maintains TCA activity and blood progenitor ROS homeostasis, and supports normal lymph gland growth. Consequently, animals that fail to smell also fail to sustain TCA activity and ROS homeostasis, which leads to lymph gland growth retardation. Overall, this study describes the requirement of animal odor-sensing and GABA in myeloid ROS regulation and hematopoietic growth control.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ismaël Morin-Poulard ◽  
Yushun Tian ◽  
Nathalie Vanzo ◽  
Michèle Crozatier

In adult mammals, blood cells are formed from hematopoietic stem progenitor cells, which are controlled by a complex cellular microenvironment called “niche”. Drosophila melanogaster is a powerful model organism to decipher the mechanisms controlling hematopoiesis, due both to its limited number of blood cell lineages and to the conservation of genes and signaling pathways throughout bilaterian evolution. Insect blood cells or hemocytes are similar to the mammalian myeloid lineage that ensures innate immunity functions. Like in vertebrates, two waves of hematopoiesis occur in Drosophila. The first wave takes place during embryogenesis. The second wave occurs at larval stages, where two distinct hematopoietic sites are identified: subcuticular hematopoietic pockets and a specialized hematopoietic organ called the lymph gland. In both sites, hematopoiesis is regulated by distinct niches. In hematopoietic pockets, sensory neurons of the peripheral nervous system provide a microenvironment that promotes embryonic hemocyte expansion and differentiation. In the lymph gland blood cells are produced from hematopoietic progenitors. A small cluster of cells called Posterior Signaling Centre (PSC) and the vascular system, along which the lymph gland develops, act collectively as a niche, under homeostatic conditions, to control the balance between maintenance and differentiation of lymph gland progenitors. In response to an immune stress such as wasp parasitism, lymph gland hematopoiesis is drastically modified and shifts towards emergency hematopoiesis, leading to increased progenitor proliferation and their differentiation into lamellocyte, a specific blood cell type which will neutralize the parasite. The PSC is essential to control this emergency response. In this review, we summarize Drosophila cellular and molecular mechanisms involved in the communication between the niche and hematopoietic progenitors, both under homeostatic and stress conditions. Finally, we discuss similarities between mechanisms by which niches regulate hematopoietic stem/progenitor cells in Drosophila and mammals.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. e1009709
Author(s):  
Aditya Kanwal ◽  
Pranav Vijay Joshi ◽  
Sudip Mandal ◽  
Lolitika Mandal

Drosophila larval hematopoiesis occurs in a specialized multi-lobed organ called the lymph gland. Extensive characterization of the organ has provided mechanistic insights into events related to developmental hematopoiesis. Spanning from the thoracic to the abdominal segment of the larvae, this organ comprises a pair of primary, secondary, and tertiary lobes. Much of our understanding arises from the studies on the primary lobe, while the secondary and tertiary lobes have remained mostly unexplored. Previous studies have inferred that these lobes are composed of progenitors that differentiate during pupation; however, the mechanistic basis of this extended progenitor state remains unclear. This study shows that posterior lobe progenitors are maintained by a local signaling center defined by Ubx and Collier in the tertiary lobe. This Ubx zone in the tertiary lobe shares several markers with the niche of the primary lobe. Ubx domain regulates the homeostasis of the posterior lobe progenitors in normal development and an immune-challenged scenario. Our study establishes the lymph gland as a model to tease out how the progenitors interface with the dual niches within an organ during development and disorders.


Biology Open ◽  
2021 ◽  
Author(s):  
Tram Thi Ngoc Nguyen ◽  
Jiwon Shim ◽  
Young-Han Song

Ionizing radiation (IR) induces DNA double-strand breaks that activate the DNA damage response (DDR), which leads to cell cycle arrest, senescence, or apoptotic cell death. Understanding the DDR of stem cells is critical to tissue homeostasis and the survival of the organism. Drosophila hematopoiesis serves as a model system for sensing stress and environmental changes; however, their response to DNA damage remains largely unexplored. The Drosophila lymph gland is the larval hematopoietic organ, where stem-like progenitors proliferate and differentiate into mature blood cells called hemocytes. We found that apoptotic cell death was induced in progenitors and hemocytes after 40 Gy irradiation, with progenitors showing more resistance to IR-induced cell death compared to hemocytes at a lower dose. Furthermore, we found that Drosophila ATM (tefu), Chk2 (lok), p53, and reaper were necessary for IR-induced cell death in the progenitors. Notably, IR-induced cell death in mature hemocytes required tefu, Drosophila JNK (bsk), and reaper, but not lok or p53. In summary, we found that DNA damage induces apoptotic cell death in the late third instar larval lymph gland and identified lok/p53-dependent and -independent cell death pathways in progenitors and mature hemocytes, respectively.


Author(s):  
Arindam Ray ◽  
Kajal Kamat ◽  
Maneesha S. Inamdar

Mitochondria are highly dynamic organelles whose activity is an important determinant of blood stem and progenitor cell state. Mitochondrial morphology is maintained by continuous fission and fusion and affects stem cell proliferation, differentiation, and aging. However, the mechanism by which mitochondrial morphology and dynamics regulate cell differentiation and lineage choice remains incompletely understood. Asrij/OCIAD1 is a conserved protein that governs mitochondrial morphology, energy metabolism and human embryonic stem cell (hESC) differentiation. To investigate the in vivo relevance of these properties, we compared hESC phenotypes with those of Drosophila hematopoiesis, where Asrij is shown to regulate blood progenitor maintenance by conserved mechanisms. In concordance with hESC studies, we found that Drosophila Asrij also localizes to mitochondria of larval blood cells and its depletion from progenitors results in elongated mitochondria. Live imaging of asrij knockdown hemocytes and of OCIAD1 knockout hESCs showed reduced mitochondrial dynamics. Since key regulators of mitochondrial dynamics actively regulate mitochondrial morphology, we hypothesized that mitochondrial fission and fusion may control progenitor maintenance or differentiation in an Asrij-dependent manner. Knockdown of the fission regulator Drp1 in Drosophila lymph gland progenitors specifically suppressed crystal cell differentiation whereas depletion of the fusion regulator Marf (Drosophila Mitofusin) increased the same with concomitant upregulation of Notch signaling. These phenotypes were stronger in anterior progenitors and were exacerbated by Asrij depletion. Asrij is known to suppress Notch signaling and crystal cell differentiation. Our analysis reveals that synergistic interactions of Asrij with Drp1 and Marf have distinct impacts on lymph gland progenitor mitochondrial dynamics and crystal cell differentiation. Taken together, using invertebrate and mammalian model systems we demonstrate a conserved role for Asrij/OCIAD1 in linking mitochondrial dynamics and progenitor differentiation. Our study sets the stage for deciphering how regulators of mitochondrial dynamics may contribute to functional heterogeneity and lineage choice in vertebrate blood progenitors.


2021 ◽  
Vol 17 (5) ◽  
pp. e1009615
Author(s):  
Johnny R. Ramroop ◽  
Mary Ellen Heavner ◽  
Zubaidul H. Razzak ◽  
Shubha Govind

The wasps Leptopilina heterotoma parasitize and ingest their Drosophila hosts. They produce extracellular vesicles (EVs) in the venom that are packed with proteins, some of which perform immune suppressive functions. EV interactions with blood cells of host larvae are linked to hematopoietic depletion, immune suppression, and parasite success. But how EVs disperse within the host, enter and kill hematopoietic cells are not well understood. Using an antibody marker for L. heterotoma EVs, we show that these parasite-derived structures are readily distributed within the hosts’ hemolymphatic system. EVs converge around the tightly clustered cells of the posterior signaling center (PSC) of the larval lymph gland, a small hematopoietic organ in Drosophila. The PSC serves as a source of developmental signals in naïve animals. In wasp-infected animals, the PSC directs the differentiation of lymph gland progenitors into lamellocytes. These lamellocytes are needed to encapsulate the wasp egg and block parasite development. We found that L. heterotoma infection disassembles the PSC and PSC cells disperse into the disintegrating lymph gland lobes. Genetically manipulated PSC-less lymph glands remain non-responsive and largely intact in the face of L. heterotoma infection. We also show that the larval lymph gland progenitors use the endocytic machinery to internalize EVs. Once inside, L. heterotoma EVs damage the Rab7- and LAMP-positive late endocytic and phagolysosomal compartments. Rab5 maintains hematopoietic and immune quiescence as Rab5 knockdown results in hematopoietic over-proliferation and ectopic lamellocyte differentiation. Thus, both aspects of anti-parasite immunity, i.e., (a) phagocytosis of the wasp’s immune-suppressive EVs, and (b) progenitor differentiation for wasp egg encapsulation reside in the lymph gland. These results help explain why the lymph gland is specifically and precisely targeted for destruction. The parasite’s simultaneous and multipronged approach to block cellular immunity not only eliminates blood cells, but also tactically blocks the genetic programming needed for supplementary hematopoietic differentiation necessary for host success. In addition to its known functions in hematopoiesis, our results highlight a previously unrecognized phagocytic role of the lymph gland in cellular immunity. EV-mediated virulence strategies described for L. heterotoma are likely to be shared by other parasitoid wasps; their understanding can improve the design and development of novel therapeutics and biopesticides as well as help protect biodiversity.


2021 ◽  
Author(s):  
Johnny R. Ramroop ◽  
Mary Ellen Heavner ◽  
Zubaidul H. Razzak ◽  
Shubha Govind

AbstractThe wasps Leptopilina heterotoma parasitize and ingest their Drosophila hosts. They produce extracellular vesicles (EVs) in the venom that are packed with proteins, some of which perform immune suppressive functions. EV interactions with blood cells of host larvae are linked to hematopoietic depletion, immune suppression, and parasite success. But how EVs disperse within the host, enter and kill hematopoietic cells are not well understood. Using an antibody marker for L. heterotoma EVs, we show that these parasite-derived structures are readily distributed within the hosts’ hemolymphatic system. EVs converge around the tightly clustered cells of the posterior signaling center (PSC) of the larval lymph gland, a small hematopoietic organ in Drosophila. The PSC serves as a source of developmental signals in naïve animals. In wasp-infected animals, the PSC directs the differentiation of lymph gland progenitors into lamellocytes. These lamellocytes are needed to encapsulate the wasp egg and block parasite development. We found that L. heterotoma infection disassembles the PSC and PSC cells disperse into the disintegrating lymph gland lobes. Genetically manipulated PSC-less lymph glands remain non-responsive and largely intact in the face of L. heterotoma infection. We also show that the larval lymph gland progenitors use the endocytic machinery to internalize EVs. Once inside, L. heterotoma EVs damage the Rab7- and LAMP1-positive late endocytic and phagolysosomal compartments. Rab5 maintains hematopoietic and immune quiescence as Rab5 knockdown results in hematopoietic over-proliferation and ectopic lamellocyte differentiation. Thus, both aspects of anti-parasite immunity, i.e., (a) phagocytosis of the wasp’s immune-suppressive EVs, and (b) progenitor differentiation for wasp egg encapsulation reside in the lymph gland. These results help explain why the lymph gland is specifically and precisely targeted for destruction. The parasite’s simultaneous and multipronged approach to block cellular immunity not only eliminates blood cells, but also tactically blocks the genetic programming needed for supplementary hematopoietic differentiation necessary for host success. In addition to its known functions in hematopoiesis, our results highlight a previously unrecognized phagocytic role of the lymph gland in cellular immunity. EV-mediated virulence strategies described for L. heterotoma are likely to be shared by other parasitoid wasps; their understanding can improve the design and development of novel therapeutics and biopesticides as well as help protect biodiversity.Author summaryParasitoid wasps serve as biological control agents of agricultural insect pests and are worthy of study. Many parasitic wasps develop inside their hosts to emerge as free-living adults. To overcome the resistance of their hosts, parasitic wasps use varied and ingenious strategies such as mimicry, evasion, bioactive venom, virus-like particles, viruses, and extracellular vesicles (EVs). We describe the effects of a unique class of EVs containing virulence proteins and produced in the venom of wasps that parasitize fruit flies of Drosophila species. EVs from Leptopilina heterotoma are widely distributed throughout the Drosophila hosts’ circulatory system after infection. They enter and kill macrophages by destroying the very same subcellular machinery that facilitates their uptake. An important protein in this process, Rab5, is needed to maintain the identity of the macrophage; when Rab5 function is reduced, macrophages turn into a different cell type called lamellocytes. Activities in the EVs can eliminate lamellocytes as well. EVs also interfere with the hosts’ genetic program that promotes lamellocyte differentiation needed to block parasite development. Thus, wasps combine specific preemptive and reactive strategies to deplete their hosts of the very cells that would otherwise sequester and kill them. These findings have applied value in agricultural pest control and medical therapeutics.


2021 ◽  
Author(s):  
Tina Mukherjee ◽  
Ankita Kapoor ◽  
A Padmavathi

In Drosophila, definitive hematopoiesis occurs in a specialized organ termed "lymph gland", where multi-potent stem-like blood progenitor cells reside and their homeostasis is central to growth of this organ. Recent findings have implicated a reliance on neurotransmitters in progenitor development and function however, our understanding of these molecules is still limited. Here, we extend our analysis and show that blood-progenitors are self-sufficient in synthesizing dopamine, a well-established neurotransmitter and have modules for its sensing through receptor and uptake via, transporter. Modulating their expression in progenitor cells affects lymph gland growth. Progenitor cell cycle analysis revealed an unexpected requirement for intracellular dopamine in progression of early progenitors from S to G2 phase of the cell cycle, while activation of dopamine-receptor later in development regulated the progression from G2 to entry into mitosis. The dual capacity in which dopamine operates, both intra-cellularly and extra-cellularly, controls lymph gland growth. These data highlight a novel and non-canonical use of dopamine as a proliferative cue by the myeloid-progenitor system and reveals a functional requirement for intracellular dopamine in cell-cycle progression.


2021 ◽  
Author(s):  
Manisha Goyal ◽  
Ajay Tomar ◽  
Sukanya Madhwal ◽  
Tina Mukherjee

AbstractThe importance of reactive oxygen species (ROS) in myeloid cell development and function is well-established. However, a comprehensive understanding of metabolic states controlling ROS levels during hematopoiesis remains elusive. Myeloid-like blood progenitor cells of the Drosophila larvae reside in a specialized hematopoietic organ called the lymph gland. We find that these progenitors in homeostasis, utilize TCA to generate ROS. Excessive activation of TCA however raises ROS levels causing them to precociously differentiate and leads to retardation of lymph gland size. Thus, to maintain ROS homeostasis, progenitor cells utilize systemically derived GABA. GABA internalization and catabolism via inhibiting hydroxy prolyl hydroxylase (Hph) activity, promotes pyruvate dehydrogenase kinase enzyme activity (PDK). PDK controls inhibitory phosphorylation of pyruvate dehydrogenase (PDH), the rate-limiting enzyme, connecting pyruvate to TCA cycle and OXPHOS. Thus, by regulating PDK, GABA regulates progenitor TCA activity and ROS levels. In addition to this, GABA-catabolism/Hph axis via Hifα/Sima drives a glycolytic state in progenitor cells. The dual control established by GABA on PDK and Sima maintains progenitor cell metabolism and sustains ROS homeostasis necessary for their development. Taken together, our study demonstrates the metabolic underpinnings of GABA in myeloid ROS regulation and their development, the relevance of which may be broadly conserved.


Sign in / Sign up

Export Citation Format

Share Document