milankovitch theory
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 4)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Robert E. Wong

Abstract. Based upon research results over the past five decades, there has been a general acceptance that the ice ages were initiated by astronomical phenomenon. Specifically, marine, ice and terrestrial paleoclimate data have supported elements of the Milankovitch astronomical theory of the ice ages. However, there remain unresolved problems between the empirical findings and theory. The 100 thousand year problem has been the subject of extensive research since a 100 thousand year cycle that matches the Earth orbit eccentricity period dominates the frequencies found in paleoclimate records. Yet, eccentricity produces an insignificant variation in annual solar energy. Other problems include the Stage 11 problem, the missing interglacials problem, how glaciation is sustained over multiple tens of thousands of years and synchronous hemispheric glaciation. I shall show these problems are resolved by modification of the prevailing Milankovitch theory. In particular, two elements of the theory need modification. One is the limitation of eccentricity's role and the other assuming that glaciation results only from cool summer conditions. By applying the Solar Energy Invariance law to define e-seasons, how eccentricity provides conditions for glaciation is demonstrated. The results show eccentricity variations provide significant solar energy variations at the top of the earth's atmosphere to produce glaciation that is global. Global glaciation results in colder winter glaciation occurring in one hemisphere simultaneous with cool summer glaciation in the other hemisphere. Analysis with these modifications resolves each of the problems.


2020 ◽  
Author(s):  
Kanon Kino ◽  
Atsushi Okazaki ◽  
Alexandre Cauquoin ◽  
Kei Yosnimura

<p>It has been well demonstrated that the variations of orbital parameters, known as Milankovitch theory, are one of the most important drivers of the Earth’s climate system. However, the way how the changes in orbital forcing imprint the glacial-interglacial cycles recorded in paleo-proxies, such as stable water isotopes in ice cores and speleothems, is still unclear. One way to progress in this question is to make direct comparisons of isotopic data with simulation results from isotope-enabled General Circulation Models (GCMs). We use here such a model, the Japanese atmospheric GCM MIROC5-iso[1], to perform simulations under different idealized paleoclimate conditions. For that, corresponding orbital parameters and greenhouse gases concentrations are set. Prescribed sea surface temperature and sea ice coverage boundary conditions from the fully coupled atmosphere-ocean GCM MIROC (MIROC-AOGCM) experiments are used, after an adaptation to the MIROC5-iso grid. Because earlier version of MIROC-AOGCM has been widely used for paleoclimate modeling purposes, the climatological mean states of MIROC5-iso under preindustrial conditions are evaluated against simulation results from different versions of MIROC-AOGCM (MIROC4m, which is a slightly updated version of MIROC3.2(med), and MIROC5 [2]). In addition, several interglacial periods and idealized paleoclimate experiments will be investigated and implications for the interpretation of water isotope response to the changes in orbital forcing will be discussed.</p><p>[1] Okazaki and Yoshimura, J. Geophys. Res. Atmos, <strong>124</strong>, 8972–8993, 2019.</p><p><span>[</span>2<span>]</span> Watanabe et al., J. Climate, <strong>23</strong>, 6312–6335, 2010.</p>


2020 ◽  
Vol 3 (1) ◽  

Knowledge deficiencies and ignorance content relating to critical physical conditions of earth in glacial-interglacial cycles are analyzed from the point of view of whether human societies are capable of adapting and dealing with radical climate change in distant future. Amplified Milankovitch theory and canopied earth theory of glacial-interglacial cycles provide conflicting signals, one seeing the current interglacial lengthened by human-induced climate change giving the human societies ample time to prepare for the next glacial and the other seeing the arrival of the next glacial to be independent of human activities and thus posing a supreme risk to unprepared human societies. Foundational analysis indicates little difference between the ancient and modern humans reacting to glacial-interglacial cycles. Both, preoccupied with daily requirements of life fail to prepare to address their knowledge deficiencies of global physical conditions and thus expose individuals and societies to immense risk without adaptive possibilities.


2016 ◽  
Vol 170 ◽  
pp. 158-165 ◽  
Author(s):  
Stephen J. Puetz ◽  
Andreas Prokoph ◽  
Glenn Borchardt
Keyword(s):  

2014 ◽  
Vol 10 (4) ◽  
pp. 1567-1579 ◽  
Author(s):  
M. Heinemann ◽  
A. Timmermann ◽  
O. Elison Timm ◽  
F. Saito ◽  
A. Abe-Ouchi

Abstract. One hundred thousand years of ice sheet buildup came to a rapid end ∼25–10 thousand years before present (ka BP), when ice sheets receded quickly and multi-proxy reconstructed global mean surface temperatures rose by ∼3–5 °C. It still remains unresolved whether insolation changes due to variations of earth's tilt and orbit were sufficient to terminate glacial conditions. Using a coupled three-dimensional climate–ice sheet model, we simulate the climate and Northern Hemisphere ice sheet evolution from 78 ka BP to 0 ka BP in good agreement with sea level and ice topography reconstructions. Based on this simulation and a series of deglacial sensitivity experiments with individually varying orbital parameters and prescribed CO2, we find that enhanced calving led to a slowdown of ice sheet growth as early as ∼8 ka prior to the Last Glacial Maximum (LGM). The glacial termination was then initiated by enhanced ablation due to increasing obliquity and precession, in agreement with the Milankovitch theory. However, our results also support the notion that the ∼100 ppmv rise of atmospheric CO2 after ∼18 ka BP was a key contributor to the deglaciation. Without it, the present-day ice volume would be comparable to that of the LGM and global mean temperatures would be about 3 °C lower than today. We further demonstrate that neither orbital forcing nor rising CO2 concentrations alone were sufficient to complete the deglaciation.


2014 ◽  
Vol 7 (3) ◽  
pp. 1051-1068 ◽  
Author(s):  
T. S. Kostadinov ◽  
R. Gilb

Abstract. Milankovitch theory postulates that periodic variability of Earth's orbital elements is a major climate forcing mechanism, causing, for example, the contemporary glacial–interglacial cycles. There are three Milankovitch orbital parameters: orbital eccentricity, precession and obliquity. The interaction of the amplitudes, periods and phases of these parameters controls the spatio-temporal patterns of incoming solar radiation (insolation) and the timing and duration of the seasons. This complexity makes Earth–Sun geometry and Milankovitch theory difficult to teach effectively. Here, we present "Earth Orbit v2.1": an astronomically precise and accurate model that offers 3-D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcing. The model is developed in MATLAB® as a user-friendly graphical user interface. Users are presented with a choice between the Berger (1978a) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. A "demo" mode is also available, which allows the Milankovitch parameters to be varied independently of each other, so that users can isolate the effects of each parameter on orbital geometry, the seasons, and insolation. A 3-D orbital configuration plot, as well as various surface and line plots of insolation and insolation anomalies on various time and space scales are produced. Insolation computations use the model's own orbital geometry with no additional a priori input other than the Milankovitch parameter solutions. Insolation output and the underlying solar declination computation are successfully validated against the results of Laskar et al. (2004) and Meeus (1998), respectively. The model outputs some ancillary parameters as well, e.g., Earth's radius-vector length, solar declination and day length for the chosen date and latitude. Time-series plots of the Milankovitch parameters and several relevant paleoclimatological data sets can be produced. Both research and pedagogical applications are envisioned for the model.


2013 ◽  
Vol 6 (4) ◽  
pp. 5947-5980
Author(s):  
T. S. Kostadinov ◽  
R. Gilb

Abstract. Milankovitch theory postulates that periodic variability of Earth's orbital elements is a major climate forcing mechanism, causing, for example, the contemporary glacial-interglacial cycles. There are three Milankovitch orbital parameters: orbital eccentricity, precession and obliquity. The interaction of the amplitudes, periods and phases of these parameters controls the spatio-temporal patterns of incoming solar radiation (insolation) and the timing of the seasons with respect to perihelion. This complexity makes Earth–Sun geometry and Milankovitch theory difficult to teach effectively. Here, we present "Earth Orbit v2.1": an astronomically precise and accurate model that offers 3-D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcing. The model is developed in MATLAB® as a user-friendly graphical user interface. Users are presented with a choice between the Berger (1978a) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. A "demo" mode is also available, which allows the Milankovitch parameters to be varied independently of each other, so that users can isolate the effects of each parameter on orbital geometry, the seasons, and insolation. A 3-D orbital configuration plot, as well as various surface and line plots of insolation and insolation anomalies on various time and space scales are produced. Insolation computations use the model's own orbital geometry with no additional a priori input other than the Milankovitch parameter solutions. Insolation output and the underlying solar declination computation are successfully validated against the results of Laskar et al. (2004) and Meeus (1998), respectively. The model outputs some ancillary parameters as well, e.g. Earth's radius-vector length, solar declination and day length for the chosen date and latitude. Time-series plots of the Milankovitch parameters and EPICA ice core CO2 and temperature data can be produced. Both research and pedagogical applications are envisioned for the model.


Sign in / Sign up

Export Citation Format

Share Document