scholarly journals Deglacial ice sheet meltdown: orbital pacemaking and CO<sub>2</sub> effects

2014 ◽  
Vol 10 (4) ◽  
pp. 1567-1579 ◽  
Author(s):  
M. Heinemann ◽  
A. Timmermann ◽  
O. Elison Timm ◽  
F. Saito ◽  
A. Abe-Ouchi

Abstract. One hundred thousand years of ice sheet buildup came to a rapid end ∼25–10 thousand years before present (ka BP), when ice sheets receded quickly and multi-proxy reconstructed global mean surface temperatures rose by ∼3–5 °C. It still remains unresolved whether insolation changes due to variations of earth's tilt and orbit were sufficient to terminate glacial conditions. Using a coupled three-dimensional climate–ice sheet model, we simulate the climate and Northern Hemisphere ice sheet evolution from 78 ka BP to 0 ka BP in good agreement with sea level and ice topography reconstructions. Based on this simulation and a series of deglacial sensitivity experiments with individually varying orbital parameters and prescribed CO2, we find that enhanced calving led to a slowdown of ice sheet growth as early as ∼8 ka prior to the Last Glacial Maximum (LGM). The glacial termination was then initiated by enhanced ablation due to increasing obliquity and precession, in agreement with the Milankovitch theory. However, our results also support the notion that the ∼100 ppmv rise of atmospheric CO2 after ∼18 ka BP was a key contributor to the deglaciation. Without it, the present-day ice volume would be comparable to that of the LGM and global mean temperatures would be about 3 °C lower than today. We further demonstrate that neither orbital forcing nor rising CO2 concentrations alone were sufficient to complete the deglaciation.

2014 ◽  
Vol 10 (1) ◽  
pp. 509-532
Author(s):  
M. Heinemann ◽  
A. Timmermann ◽  
O. E. Timm ◽  
F. Saito ◽  
A. Abe-Ouchi

Abstract. Eighty thousand years of ice-sheet build-up came to a rapid end ~20–10 thousand years before present (ka BP), when ice sheets receded quickly, and global mean surface temperatures rose by about 4 °C. It still remains unresolved whether insolation changes due to variations of earth's tilt and orbit were sufficient to terminate glacial conditions. Using a coupled three-dimensional climate–ice-sheet model, we simulate the climate and Northern Hemisphere ice-sheet evolution from 78 to 0 ka BP in good agreement with sea level and ice topography reconstructions. Based on this simulation and a series of deglacial sensitivity experiments with individually varying orbital parameters and CO2, we find that enhanced calving led to a slow-down of ice-sheet growth already 5 to 8 ka prior to the Last Glacial Maximum (LGM), as evidenced by the change in curvature of the simulated and reconstructed ice volume time series. Increasing obliquity and precession then led to accelerated ice loss due to ablation and calving, thereby initiating the glacial termination. The deglacial sensitivity experiments further reveal that the ~100 ppmv rise of atmospheric CO2 after ~18 ka BP was a key contributor to the deglaciation. Without it, the present-day ice volume would be comparable to that of the LGM and global mean temperatures would be about 3 °C lower than today. We further demonstrate that neither orbital forcing nor CO2 forcing alone were sufficient to complete the deglaciation.


2001 ◽  
Vol 56 (3) ◽  
pp. 299-307 ◽  
Author(s):  
Isaac J. Winograd

AbstractThe magnitude of late Wisconsinan (post-35,000 yr B.P.) ice-sheet growth in the Northern Hemisphere is not well known. Ice volume at ∼35,000 yr B.P. may have been as little as 20% or as much as 70% of the volume present at the last glacial maximum (LGM). A conservative evaluation of glacial–geologic, sea level, and benthic δ18O data indicates that ice volume at ∼35,000 yr B.P. was approximately 50% of that extant at the LGM (∼20,000 yr B.P.); that is, it doubled in about 15,000 yr. On the basis of literature for the North Atlantic and a sea-surface temperature (SST) data compilation, it appears that this rapid growth may have been forced by low-to-mid-latitude SST warming in both the Atlantic and Pacific Oceans, with attendant increased moisture transport to high latitudes. The SST ice-sheet growth notion also explains the apparent synchroneity of late Wisconsinan mountain glaciation in both hemispheres.


1997 ◽  
Vol 25 ◽  
pp. 333-339 ◽  
Author(s):  
Philippe Huybrechts ◽  
Stephen T’siobbel

A quasi-three-dimensional (3-D) climate model (Sellers, 1983) was used to simulate the climate of the Last Glacial Maximum (LGM) in order to provide climatic input for the modelling of the Northern Hemisphere ice sheets. The climate model is basically a coarse-gridded general circulation (GCM) with simplified dynamics, and was subject to appropriate boundary conditions for ice-sheet elevation, atmospheric CO2concentration and orbital parameters. When compared with the present-daysimulation, the simulated climate at the Last Glacial Maximum is characterized by a global annual cooling of 3.5°C and a reduction in global annualprecipitation of 7.5%, which agrees well with results from other, more complex GCMs. Also the patterns of temperature change compare fairly with mostother GCM results, except for a smaller cooling over the North Atlantic and the larger cooling predicted for the summer rather than for the winter over Eurasia.The climate model is able to simulate changes in Northern Hemisphere tropospheric circulation, yielding enhanced westerlies in the vicinity of the Laurentide and Eurasian ice sheets. However, the simulated precipitation patterns are less convincing, and show a distinct mean precipitation increase over the Laurentide ice sheet. Nevertheless, when using the mean-monthly fields of LGM minus present-day anomalies of temperature and precipitation rate to drive a three-dimensional thermomechanical ice-sheet model, it was demonstrated that within realistic bounds of the ice-flow and mass-balance parameters, veryreasonable reconstructions of the Last Glacial Maximum ice sheets could be obtained.


1993 ◽  
Vol 341 (1297) ◽  
pp. 253-261 ◽  

A two-dimensional model which links the atmosphere, the mixed layer of the ocean, the sea ice, the continents, the ice sheets and their underlying bedrock has been used to test the Milankovitch theory over the last two glacial-interglacial cycles. A series of sensitivity analyses have allowed us to understand better the internal mechanisms which drive the simulated climate system and in particular the feedbacks related to surface albedo and water vapour. It was found that orbital variations alone can induce, in such a system, feedbacks sufficient to generate the low frequency p art of the climatic variations over the last 122 ka. These simulated variations at the astronomical timescale are broadly in agreement with reconstructions of ice-sheet volume and of sea level independently obtained from geological data. Imperfections in the stimulated climate were the insufficient southward extent of the ice sheets and the too small hemispheric cooling at the last glacial maximum . These deficiencies were partly remedied in a further experiment by using the time-dependent atmospheric CO2 concentration given by the Vostok ice core in addition to the astronomical forcing. In this transient simulation, 70% of the Northern Hemisphere ice volume is related to the astronomical forcing and the related changes in the albedo, the rem aining 30% being due to the CO 2 changes. Analysis of the processes involved shows that variations of ablation are more important for the ice-sheet response than are variations of snow precipitation. A key mechanism in the deglaciation after the last glacial maxim um appears to be the ‘ageing’ of snow which significantly decreases its albedo. The other factors which play an important role are ice-sheet altitude, insolation, taiga cover, ice-albedo feedback, ice-sheet configuration (‘continentality’ and ‘desert’ effect), isostatic rebound, CO 2 changes and tem perature-water vapour feedback. Numerical experiments have also been carried out with a one-dimensional radiative-convective model in order to quantify the influence of the CO 2 changes and of the water vapour feedback on the climate evolution of the Northern Hemisphere over the last 122 ka. Results of these experiments indicate that 67% of the simulated cooling at the last glacial maximum can be attributed to the astronomical forcing and the subsequent surface albedo increase, the remaining 33% being associated with the reduced CO 2 concentration. Moreover, the water vapour feedback explains 40% of the simulated cooling in all the experiments done. The transient response of the clim ate system to both the astronomical and CO 2 forcing was also simulated by the LLN (Louvain-la-Neuve) 2.5-dimensional model over the two last glacial-interglacial cycles. It is particularly significant that spectral analysis of the simulated Northern Hemisphere global ice volume variations reproduces correctly the relative intensity of the peaks at the orbital frequencies. Except for variations with timescales shorter than 5 ka, the simulated long-term variations of total ice volume are comparable to that reconstructed from deep sea cores. For example, the model simulates glacial maxima of similar amplitudes at 134 ka BP and 15 ka BP, followed by abrupt deglaciations. The complete deglaciation of the three main Northern Hemisphere ice sheets, which is simulated around 122 ka BP, is in partial disagreement with reconstructions indicating that the Greenland ice sheet survived during the Eemian interglacial. The continental ice volume variations during the last 122 ka of the 200 ka simulation are, however, not significantly affected by this shortcoming.


2020 ◽  
Author(s):  
Javier Blasco ◽  
Jorge Alvarez-Solas ◽  
Alexander Robinson ◽  
Marisa Montoya

Abstract. Little is known about the distribution of ice in the Antarctic ice sheet (AIS) during the Last Glacial Maximum (LGM). Whereas marine and terrestrial geological data indicate that the grounded ice advanced to a position close to the continental-shelf break, the total ice volume is unclear. Glacial boundary conditions are potentially important sources of uncertainty, in particular basal friction and climatic boundary conditions. Basal friction exerts a strong control on the large-scale dynamics of the ice sheet and thus affects its size, and is not well constrained. Glacial climatic boundary conditions determine the net accumulation and ice temperature, and are also poorly known. Here we explore the effect of the uncertainty in both features on the total simulated ice storage of the AIS at the LGM. For this purpose we use a hybrid ice-sheet-shelf model that is forced with different basal-drag choices and glacial background climatic conditions obtained from the LGM ensemble climate simulations of the third phase of the Paleoclimate Modelling Intercomparison Project (PMIP3). For a wide range of plausible basal friction configurations, the simulated ice dynamics vary widely but all simulations produce fully extended ice sheets towards the continental-shelf break. More dynamically active ice sheets correspond to lower ice volumes, while they remain consistent with the available constraints on ice extent. Thus, this work points to the possibility of an AIS with very active ice streams during the LGM. In addition, we find that the surface boundary temperature field plays a crucial role in determining the ice extent through its effect on viscosity. For ice sheets of a similar extent and comparable dynamics, we find that the precipitation field determines the total AIS volume. However, precipitation is deeply uncertain. Climatic fields simulated by climate models show more precipitation in coastal regions than a spatially uniform anomaly, which can lead to larger ice volumes. We strongly support using these paleoclimatic fields to simulate and study the LGM and potentially other time periods like the Last Interglacial. However, their accuracy must be assessed as well, as differences between climate model forcing lead to a range in the simulated ice volume and extension of about 6 m sea-level equivalent and one million km2.


2000 ◽  
Vol 30 ◽  
pp. 177-186 ◽  
Author(s):  
Lev Tarasov ◽  
W. Richard Peltier

AbstractThe problem of recovering the small aspect ratio of the ICE-4G reconstruction of the Last Glacial Maximum Laurentide ice sheet has proven to be a challenge for state-of-the-art thermomechanically-coupled three-dimensional ice-sheet models coupled to reduced climate models. Flow enhancements to Glen’s flow law, 20 to 30 times those required to adequately simulate the present-day Greenland ice sheet, have been found necessary in order to reproduce both the thickness and areal extent of the geophysical reconstruction. Within the confines of the Glen flow rheology, it is unclear what mechanism might explain the magnitude of this discrepancy in required flow enhancement for the Laurentide relative to the Greenland ice sheet We present a comparative analysis of three alternative explanations of such a questionable flow-law enhancement: radical changes to mass balance; radical changes to ice-sheet history; and strongly enhanced basal flows Based on this analysis, we argue that none of these alternatives provide a fully acceptable explanation for the small ICE-4G LGM aspect ratio of the Laurentide ice sheet, that has been inferred geophysically.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Evan J. Gowan ◽  
Xu Zhang ◽  
Sara Khosravi ◽  
Alessio Rovere ◽  
Paolo Stocchi ◽  
...  

AbstractThe evolution of past global ice sheets is highly uncertain. One example is the missing ice problem during the Last Glacial Maximum (LGM, 26 000-19 000 years before present) – an apparent 8-28 m discrepancy between far-field sea level indicators and modelled sea level from ice sheet reconstructions. In the absence of ice sheet reconstructions, researchers often use marine δ18O proxy records to infer ice volume prior to the LGM. We present a global ice sheet reconstruction for the past 80 000 years, called PaleoMIST 1.0, constructed independently of far-field sea level and δ18O proxy records. Our reconstruction is compatible with LGM far-field sea-level records without requiring extra ice volume, thus solving the missing ice problem. However, for Marine Isotope Stage 3 (57 000-29 000 years before present) - a pre-LGM period - our reconstruction does not match proxy-based sea level reconstructions, indicating the relationship between marine δ18O and sea level may be more complex than assumed.


1997 ◽  
Vol 25 ◽  
pp. 333-339 ◽  
Author(s):  
Philippe Huybrechts ◽  
Stephen T’siobbel

A quasi-three-dimensional (3-D) climate model (Sellers, 1983) was used to simulate the climate of the Last Glacial Maximum (LGM) in order to provide climatic input for the modelling of the Northern Hemisphere ice sheets. The climate model is basically a coarse-gridded general circulation (GCM) with simplified dynamics, and was subject to appropriate boundary conditions for ice-sheet elevation, atmospheric CO2 concentration and orbital parameters. When compared with the present-daysimulation, the simulated climate at the Last Glacial Maximum is characterized by a global annual cooling of 3.5°C and a reduction in global annualprecipitation of 7.5%, which agrees well with results from other, more complex GCMs. Also the patterns of temperature change compare fairly with mostother GCM results, except for a smaller cooling over the North Atlantic and the larger cooling predicted for the summer rather than for the winter over Eurasia.The climate model is able to simulate changes in Northern Hemisphere tropospheric circulation, yielding enhanced westerlies in the vicinity of the Laurentide and Eurasian ice sheets. However, the simulated precipitation patterns are less convincing, and show a distinct mean precipitation increase over the Laurentide ice sheet. Nevertheless, when using the mean-monthly fields of LGM minus present-day anomalies of temperature and precipitation rate to drive a three-dimensional thermomechanical ice-sheet model, it was demonstrated that within realistic bounds of the ice-flow and mass-balance parameters, veryreasonable reconstructions of the Last Glacial Maximum ice sheets could be obtained.


2018 ◽  
Vol 91 (1) ◽  
pp. 194-217 ◽  
Author(s):  
Juan-Luis García ◽  
Antonio Maldonado ◽  
María Eugenia de Porras ◽  
Amalia Nuevo Delaunay ◽  
Omar Reyes ◽  
...  

AbstractThe timing, structure, and landscape change during the Patagonian Ice Sheet deglaciation remains unresolved. In this article, we provide a geomorphic, stratigraphic, and geochronological deglacial record of Río Cisnes Glacier at 44°S and also from the nearby Río Ñirehuao and Río El Toqui valleys (45°S) in Chilean Patagonia. Our 14C, 10Be, and optically stimulated luminescence data indicate that after the last glacial maximum, Río Cisnes Glacier experienced ~100 km deglaciation between >19.0 and 12.3 ka, accompanied by the formation of large glacial paleolakes. Deglaciation was interrupted by several ice readvances, and by 16.9±0.3 ka, Río Cisnes Glacier extended only ~40% of its full glacial extent. The deglaciation of Río Cisnes Glacier and other sensitive Patagonian glaciers occurred at least 1 ka earlier than the ca. 17.8 ka normally assumed for the local termination, coincident with West Antarctic isotope records. This early deglaciation can be linked to an orbital forcing–driven decline of Southern Ocean sea ice associated with a distinct atmospheric warming that is apparent for West Antarctica through Patagonia.


2003 ◽  
Vol 37 ◽  
pp. 173-180 ◽  
Author(s):  
Chris Zweck ◽  
Philippe Huybrechts

AbstractMechanisms that determine time-dependent changes of the marine ice margin in dynamic ice-sheet models are important but poorly understood. Here we derive an empirical formulation for changes in the marine extent when modelling the Northern Hemisphere ice sheets over the last glacial cycle in a three-dimensional thermomechanically coupled ice-sheet model. We assume that the strongest control on changes in marine extent is ice calving, and that the variable most crucial to calving is water depth. The empirical marine-extent relationship is tuned so that the major marine-retreat history of the Laurentide and Eurasian ice sheets is modelled accurately in time and space. We find that this empirical treatment relating marine extent to water depth is sufficient to reproduce the observations, and discuss the implications for the physics of marine margin changes and the dynamics of the Northern Hemisphere ice sheets since the Last Glacial Maximum.


Sign in / Sign up

Export Citation Format

Share Document