2D kernel-based imaging of coda-Q space variations in the Gargano Promontory (Southern Italy)

2019 ◽  
Vol 297 ◽  
pp. 106313 ◽  
Author(s):  
Marilena Filippucci ◽  
Edoardo Del Pezzo ◽  
Salvatore de Lorenzo ◽  
Andrea Tallarico
2019 ◽  
Author(s):  
Katherine Jones ◽  
◽  
Daniel J. Lehrmann ◽  
Michele Morsilli ◽  
Khalid Al-Ramadan ◽  
...  

1983 ◽  
Vol 73 (1) ◽  
pp. 97-108
Author(s):  
E. Del Pezzo ◽  
F. Ferulano ◽  
A. Giarrusso ◽  
M. Martini

abstract The model developed by Aki and Chouet for the coda wave generation and propagation has been used to calculate the quality factor Q for the zone of the Aeolian Islands, southern Italy, in the frequency range of 1 to 12 Hz, and the scaling properties of the seismic spectrum in the magnitude range of 0.4 to 4.7. The Q found for the Aeolian area has a frequency dependence of the form Q = qfv. The absolute values of Q seem to be dependent on the station and location of the seismic events, confirming the strong lateral heterogeneities in the geological structure beneath the Aeolian Arc. A temporal variation has been noted in the Q calculated at Vulcano station (VPL) in a period of 3 weeks soon after the occurrence of a main shock of ML = 5.5 located near the station. The scaling behavior of this sequence is similar to that obtained in two areas of California and one portion of Japan, with a corner frequency that remains constant with an increasing seismic moment between magnitudes 1 and 4. It differs substantially from the scaling properties of the Hawaian earthquakes that show a linear pattern, without an increase of the stress drop with magnitude. The fact that Vulcano is an active volcano seems not to influence the scaling properties of the seismic sequence localized very near it. It probably indicates that the aftershocks used for calculating the scaling law are generated out of the volcanic complex Lipari-Vulcano, in a zone with a good capability of accumulating the stress.


2017 ◽  
Vol 17 (3) ◽  
pp. 467-480 ◽  
Author(s):  
Maria Elena Martinotti ◽  
Luca Pisano ◽  
Ivan Marchesini ◽  
Mauro Rossi ◽  
Silvia Peruccacci ◽  
...  

Abstract. In karst environments, heavy rainfall is known to cause multiple geohydrological hazards, including inundations, flash floods, landslides and sinkholes. We studied a period of intense rainfall from 1 to 6 September 2014 in the Gargano Promontory, a karst area in Puglia, southern Italy. In the period, a sequence of torrential rainfall events caused severe damage and claimed two fatalities. The amount and accuracy of the geographical and temporal information varied for the different hazards. The temporal information was most accurate for the inundation caused by a major river, less accurate for flash floods caused by minor torrents and even less accurate for landslides. For sinkholes, only generic information on the period of occurrence of the failures was available. Our analysis revealed that in the promontory, rainfall-driven hazards occurred in response to extreme meteorological conditions and that the karst landscape responded to the torrential rainfall with a threshold behaviour. We exploited the rainfall and the landslide information to design the new ensemble–non-exceedance probability (E-NEP) algorithm for the quantitative evaluation of the possible occurrence of rainfall-induced landslides and of related geohydrological hazards. The ensemble of the metrics produced by the E-NEP algorithm provided better diagnostics than the single metrics often used for landslide forecasting, including rainfall duration, cumulated rainfall and rainfall intensity. We expect that the E-NEP algorithm will be useful for landslide early warning in karst areas and in other similar environments. We acknowledge that further tests are needed to evaluate the algorithm in different meteorological, geological and physiographical settings.


Minerals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 567 ◽  
Author(s):  
Rosa Sinisi

In this study, the mineralogical and chemical compositions of bauxite from San Giovanni Rotondo (SGR) on the Gargano Promontory (northern Apulia, Italy) are presented and discussed with the aim of assessing the nature of its source material. Bauxite from the SGR, which is known as the “Montecatini mine”, was exploited intensively until the 1970s to recover alumina. As with most of the autochthonous peri-Mediterranean bauxites, the studied deposit is a karst bauxite with a massive, matrix-supported texture and an oolitic structure. Boehmite and hematite are the main mineral phases, and anatase, rutile, and kaolinite are present in lesser amounts along with detrital zircons and monazite grains. Calcite is abundant only in the deposit’s lower portion, triggering a significant dilution effect on trace element concentrations. However, with respect to the average crust and chondrite compositions, strong enrichments of trace metals (up to 10X Upper Continental Crust’s (UCC)) and rare earth elements (REEs, up to 800X chondrite) exist throughout the studied deposit. The distribution of REEs, the (La/Yb)N and Eu/Eu* ratios, and an Eu/Eu* versus Sm/Nd diagram have been used for determining the bauxite’s provenance. These geochemical proxies point to a parental material consisting of a mixture of distant magmatic and siliciclastic components.


2021 ◽  
Vol 11 (16) ◽  
pp. 7512
Author(s):  
Marilena Filippucci ◽  
Salvatore Lucente ◽  
Edoardo Del Pezzo ◽  
Salvatore de Lorenzo ◽  
Giacomo Prosser ◽  
...  

We investigate crustal seismic attenuation by the coda quality parameter (Qc) in the Gargano area (Southern Italy), using a recently released dataset composed of 191 small earthquakes (1.0 ≤ ML ≤ 2.8) recorded by the local OTRIONS and the Italian INGV seismic networks, over three years of seismic monitoring. Following the single back-scattering theoretical assumption, Qc was computed using different frequencies (in the range of 2–16 Hz) and different lapse times (from 10 to 40 s). The trend of Qc vs. frequency is the same as that observed in the adjacent Umbria-Marche region. Qc at 1 Hz varies between 11 and 63, indicating that the area is characterized by active tectonics, despite the absence of high-magnitude earthquakes in recent decades. The 3D mapping procedure, based on sensitivity kernels, revealed that the Gargano Promontory is characterized by very low and homogeneous Qc at low frequencies, and by high and heterogeneous Qc at high frequencies. The lateral variations of Qc at 12 Hz follow the trend of the Moho in this region and are in good agreement with other geophysical observations.


Sign in / Sign up

Export Citation Format

Share Document