japanese beech
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 17)

H-INDEX

21
(FIVE YEARS 2)

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 927
Author(s):  
Tyana Solichah Ekaputri ◽  
Ayuni Nur Apsari ◽  
Takashi Tanaka

Coatings can be used as a preservative method to protect the wood, especially the wood surface. The different component of the coating’s dependence of the purpose of it. The Japanese beech (Fagus crenata Blume) applied by several Japanese commercials coating materials. The coatings application used were spray type and brush type. X-ray microtomography in Fuji, Japan was used for visualized the coating samples. The X-ray target used were Cu, and Mo with Al filter. The X-ray image analysis in 2D and 3D were conducted using image J and VGStudio Max, respectfully. The coating’s containing materials and the concentration of it strongly affected the image result of X-ray microtomography visualization. The different X-ray target shows the different image results. The larger energy of X-ray (Mo with Al filter) is recommended to use for visualization. The X-ray images shows the penetration phenomena, which can be applied to calculate the penetration depth.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Toru Kanbayashi ◽  
Masahiro Matsunaga ◽  
Masahiko Kobayashi

Abstract Since wood chemical components can be depolymerized and modified by weathering, a better understanding of the mechanisms governing these processes in needed to develop effective protection methods for wood surfaces. Unfortunately, very little has been reported about the micro-scale chemical changes in wood, particularly hardwood, during weathering. The purpose of the present work is to determine the degradation behavior of Japanese beech (Fagus crenata Blume) under artificial weathering at the cellular-level. Herein, the structural and micro-distributional changes in wood components during weathering were investigated using micro-Raman spectral and chemical mapping analyses. The Raman spectra showed that weathering facilitated lignin degradation and modification. The degradation behavior of lignin differed depending on the type of wood tissue. The rate of lignin reduction followed a descending order: vessel element > axial parenchyma cell > wood fiber. Raman mapping determined that cellular-level lignin reduction on the surface layers differed for wood species. Although lignin degradation of cedar tracheids proceeded from both the surface and the cell lumen, the lignin in beech fibers degraded according to the depth.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Jiawei Wang ◽  
Eiji Minami ◽  
Mohd Asmadi ◽  
Haruo Kawamoto

AbstractThe thermal degradation reactivities of hemicellulose and cellulose in wood cell walls are significantly different from the thermal degradation behavior of the respective isolated components. Furthermore, the degradation of Japanese cedar (Cryptomeria japonica, a softwood) is distinct from that of Japanese beech (Fagus crenata, a hardwood). Lignin and uronic acid are believed to play crucial roles in governing this behavior. In this study, the effects of ball milling for various durations of time on the degradation reactivities of cedar and beech woods were evaluated based on the recovery rates of hydrolyzable sugars from pyrolyzed wood samples. The applied ball-milling treatment cleaved the lignin β-ether bonds and reduced the crystallinity of cellulose, as determined by X-ray diffraction. Both xylan and glucomannan degraded in a similar temperature range, although the isolated components exhibited different reactivities because of the catalytic effect of uronic acid bound to the xylose chains. These observations can be explained by the more homogeneous distribution of uronic acid in the matrix of cell walls as a result of ball milling. As observed for holocelluloses, cellulose in the ball-milled woods degraded in two temperature ranges (below 320 °C and above); a significant amount of cellulose degraded in the lower temperature range, which significantly changed the shapes of the thermogravimetric curves. This report compares the results obtained for cedar and beech woods, and discusses them in terms of the thermal degradation of the matrix and cellulose microfibrils in wood cell walls and role of lignin. Such information is crucial for understanding the pyrolysis and heat treatment of wood.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Jiawei Wang ◽  
Eiji Minami ◽  
Mohd Asmadi ◽  
Haruo Kawamoto

AbstractThe thermal degradation reactivities of cellulose and hemicellulose are substantially different in Japanese cedar (Cryptomeria japonica, a softwood) and Japanese beech (Fagus crenata, a hardwood). Uronic acid and its salts act as acid and base catalysts, respectively, and their specific placement in the cell walls has been considered a factor that influences degradation reactivity. In this study, the role of lignin in degradation reactivity was investigated using holocellulose prepared from cedar and beech woods. The thermal degradation reactivities of cellulose and hemicellulose in holocellulose were evaluated according to the recovery of hydrolyzable sugars from heat-treated samples and compared with those of wood samples. Results show that the reactivities of xylan and glucomannan in both woods became similar to those of the corresponding isolated samples when lignin was removed. By contrast, the cellulose in both woods became more reactive when lignin was removed, and the degradation could be separated into two modes depending on the reactivity. These results were analyzed in terms of the effect of lignin on the matrix of cell walls and the interaction between the matrix and surface molecules of cellulose microfibrils. Differential thermogravimetric curves of the holocellulose samples were obtained and explained in terms of the degradation of hemicellulose and cellulose. The reported findings will provide insights into the research fields of wood pyrolysis and cell wall ultrastructures.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Jiawei Wang ◽  
Eiji Minami ◽  
Haruo Kawamoto

AbstractThe thermal reactivities of cellulose and hemicellulose are significantly different in cell walls when compared with isolated components and differ in Japanese cedar (softwood) and Japanese beech (hardwood). Uronic acid bound to xylan promotes the thermal degradation of cellulose and hemicellulose, and its effect is different depending on the form of free acid (acting as an acid catalyst) or metal uronate (acting as a base catalyst). We evaluated the location of uronic acid in the cell wall by identifying the components affected by demineralization in pyrolysis of cedar and beech wood. The thermal reactivities of xylan and glucomannan in beech were changed by demineralization, but in cedar, glucomannan and cellulose reactivities were changed. Therefore, the location of uronic acid in the cell wall was established and differed between cedar and beech; close to glucomannan and xylan in beech, but close to glucomannan and cellulose in cedar. Such information is important for understanding the ultrastructure and pyrolysis behavior of softwood and hardwood cell walls.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yuri Nishiwaki-Akine ◽  
Sui Kanazawa ◽  
Norihisa Matsuura ◽  
Ryoko Yamamoto-Ikemoto
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document