unmanned air system
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 5)

H-INDEX

4
(FIVE YEARS 1)

Author(s):  
Denise S. Ponchak ◽  
Fred L. Templin ◽  
Greg Sheffield ◽  
Pedro Taboso ◽  
Raj Jain

2018 ◽  
Vol 10 (3) ◽  
pp. 254-261 ◽  
Author(s):  
Rohan Gigacz ◽  
Abdulghani Mohamed ◽  
Pakorn Poksawat ◽  
Ashim Panta ◽  
Simon Watkins

The stability of small unmanned air systems can be challenged by turbulence during low-altitude flight in cluttered urban environments. This paper explores the benefits of a tandem wing aircraft configuration with the implementation of a pressure-based phase-advanced turbulence sensory system on a small unmanned air system for gust mitigation. The objective was to utilise passive and active methods to minimise gust-induced perturbations. Experimentation in repeatable turbulence within a wind tunnel’s test section was conducted. The experiments focus on the roll axis, which is isolated through a specially designed roll-axis rig. The results show improvement over conventional aircraft. This work is part of a larger research project aimed at enabling safe, stable and steady small unmanned air systems flight in urban environments.


2018 ◽  
Vol 15 (4) ◽  
pp. 172988141878633 ◽  
Author(s):  
Mario Monteiro Marques ◽  
Victor Lobo ◽  
R Batista ◽  
J Oliveira ◽  
A Pedro Aguiar ◽  
...  

Unmanned air systems are becoming ever more important in modern societies but raise a number of unresolved problems. There are legal issues with the operation of these vehicles in nonsegregated airspace, and a pressing requirement to solve these issues is the development and testing of reliable and safe mechanisms to avoid collision in flight. In this article, we describe a sense and avoid subsystem developed for a maritime patrol unmanned air system. The article starts with a description of the unmanned air system, that was developed specifically for maritime patrol operations, and proceeds with a discussion of possible ways to guarantee that the unmanned air system does not collide with other flying objects. In the system developed, the position of the unmanned air system is obtained by the global positioning system and that of other flying objects is reported via a data link with a ground control station. This assumes that the detection of those flying objects is done by a radar in the ground or by self-reporting via a traffic monitoring system (such as automatic identification system). The algorithm developed is based on game theory. The approach is to handle both the procedures, threat detection phase and collision avoidance maneuver, in a unified fashion, where the optimal command for each possible relative attitude of the obstacle is computed off-line, therefore requiring low processing power for real-time operation. This work was done under the research project named SEAGULL that aims to improve maritime situational awareness using fleets of unmanned air system, where collision avoidance becomes a major concern.


2017 ◽  
Vol 4 (3) ◽  
pp. 141-158 ◽  
Author(s):  
Evangelos Papageorgiou ◽  
Murat Hakki Eres ◽  
James Scanlan

Sign in / Sign up

Export Citation Format

Share Document