feature dimension reduction
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 16)

H-INDEX

5
(FIVE YEARS 0)

AI ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 662-683
Author(s):  
Heiko Oppel ◽  
Michael Munz

Sports climbing has grown as a competitive sport over the last decades. This has leading to an increasing interest in guaranteeing the safety of the climber. In particular, operational errors, caused by the belayer, are one of the major issues leading to severe injuries. The objective of this study is to analyze and predict the severity of a pendulum fall based on the movement information from the belayer alone. Therefore, the impact force served as a reference. It was extracted using an Inertial Measurement Unit (IMU) on the climber. Additionally, another IMU was attached to the belayer, from which several hand-crafted features were explored. As this led to a high dimensional feature space, dimension reduction techniques were required to improve the performance. We were able to predict the impact force with a median error of about 4.96%. Pre-defined windows as well as the applied feature dimension reduction techniques allowed for a meaningful interpretation of the results. The belayer was able to reduce the impact force, which is acting onto the climber, by over 30%. So, a monitoring system in a training center could improve the skills of a belayer and hence alleviate the severity of the injuries.


2021 ◽  
Author(s):  
Sridhar Krishnan ◽  
Shanshan Yang ◽  
Fang Zheng ◽  
Xin Luo ◽  
Suxian Cai ◽  
...  

Detection of dysphonia is useful for monitoring the progression of phonatory impairment for patients with Parkinson’s disease (PD), and also helps assess the disease severity. This paper describes the statistical pattern analysis methods to study different vocal measurements of sustained phonations. The feature dimension reduction procedure was implemented by using the sequential forward selection (SFS) and kernel principal component analysis (KPCA) methods. Four selected vocal measures were projected by the KPCA onto the bivariate feature space, in which the class-conditional feature densities can be approximated with the nonparametric kernel density estimation technique. In the vocal pattern classification experiments, Fisher’s linear discriminant analysis (FLDA) was applied to perform the linear classification of voice records for healthy control subjects and PD patients, and the maximum a posteriori (MAP) decision rule and support vector machine (SVM) with radial basis function kernels were employed for the nonlinear classification tasks. Based on the KPCA-mapped feature densities, the MAP classifier successfully distinguished 91.8% voice records, with a sensitivity rate of 0.986, a specificity rate of 0.708, and an area value of 0.94 under the receiver operating characteristic (ROC) curve. The diagnostic performance provided by the MAP classifier was superior to those of the FLDA and SVM classifiers. In addition, the classification results indicated that gender is insensitive to dysphonia detection, and the sustained phonations of PD patients with minimal functional disability are more difficult to be correctly identified.


2021 ◽  
Author(s):  
Sridhar Krishnan ◽  
Shanshan Yang ◽  
Fang Zheng ◽  
Xin Luo ◽  
Suxian Cai ◽  
...  

Detection of dysphonia is useful for monitoring the progression of phonatory impairment for patients with Parkinson’s disease (PD), and also helps assess the disease severity. This paper describes the statistical pattern analysis methods to study different vocal measurements of sustained phonations. The feature dimension reduction procedure was implemented by using the sequential forward selection (SFS) and kernel principal component analysis (KPCA) methods. Four selected vocal measures were projected by the KPCA onto the bivariate feature space, in which the class-conditional feature densities can be approximated with the nonparametric kernel density estimation technique. In the vocal pattern classification experiments, Fisher’s linear discriminant analysis (FLDA) was applied to perform the linear classification of voice records for healthy control subjects and PD patients, and the maximum a posteriori (MAP) decision rule and support vector machine (SVM) with radial basis function kernels were employed for the nonlinear classification tasks. Based on the KPCA-mapped feature densities, the MAP classifier successfully distinguished 91.8% voice records, with a sensitivity rate of 0.986, a specificity rate of 0.708, and an area value of 0.94 under the receiver operating characteristic (ROC) curve. The diagnostic performance provided by the MAP classifier was superior to those of the FLDA and SVM classifiers. In addition, the classification results indicated that gender is insensitive to dysphonia detection, and the sustained phonations of PD patients with minimal functional disability are more difficult to be correctly identified.


Sign in / Sign up

Export Citation Format

Share Document