scholarly journals Effective Dysphonia Detection Using Feature Dimension Reduction and Kernel Density Estimation for Patients with Parkinson’s Disease

2021 ◽  
Author(s):  
Sridhar Krishnan ◽  
Shanshan Yang ◽  
Fang Zheng ◽  
Xin Luo ◽  
Suxian Cai ◽  
...  

Detection of dysphonia is useful for monitoring the progression of phonatory impairment for patients with Parkinson’s disease (PD), and also helps assess the disease severity. This paper describes the statistical pattern analysis methods to study different vocal measurements of sustained phonations. The feature dimension reduction procedure was implemented by using the sequential forward selection (SFS) and kernel principal component analysis (KPCA) methods. Four selected vocal measures were projected by the KPCA onto the bivariate feature space, in which the class-conditional feature densities can be approximated with the nonparametric kernel density estimation technique. In the vocal pattern classification experiments, Fisher’s linear discriminant analysis (FLDA) was applied to perform the linear classification of voice records for healthy control subjects and PD patients, and the maximum a posteriori (MAP) decision rule and support vector machine (SVM) with radial basis function kernels were employed for the nonlinear classification tasks. Based on the KPCA-mapped feature densities, the MAP classifier successfully distinguished 91.8% voice records, with a sensitivity rate of 0.986, a specificity rate of 0.708, and an area value of 0.94 under the receiver operating characteristic (ROC) curve. The diagnostic performance provided by the MAP classifier was superior to those of the FLDA and SVM classifiers. In addition, the classification results indicated that gender is insensitive to dysphonia detection, and the sustained phonations of PD patients with minimal functional disability are more difficult to be correctly identified.

2021 ◽  
Author(s):  
Sridhar Krishnan ◽  
Shanshan Yang ◽  
Fang Zheng ◽  
Xin Luo ◽  
Suxian Cai ◽  
...  

Detection of dysphonia is useful for monitoring the progression of phonatory impairment for patients with Parkinson’s disease (PD), and also helps assess the disease severity. This paper describes the statistical pattern analysis methods to study different vocal measurements of sustained phonations. The feature dimension reduction procedure was implemented by using the sequential forward selection (SFS) and kernel principal component analysis (KPCA) methods. Four selected vocal measures were projected by the KPCA onto the bivariate feature space, in which the class-conditional feature densities can be approximated with the nonparametric kernel density estimation technique. In the vocal pattern classification experiments, Fisher’s linear discriminant analysis (FLDA) was applied to perform the linear classification of voice records for healthy control subjects and PD patients, and the maximum a posteriori (MAP) decision rule and support vector machine (SVM) with radial basis function kernels were employed for the nonlinear classification tasks. Based on the KPCA-mapped feature densities, the MAP classifier successfully distinguished 91.8% voice records, with a sensitivity rate of 0.986, a specificity rate of 0.708, and an area value of 0.94 under the receiver operating characteristic (ROC) curve. The diagnostic performance provided by the MAP classifier was superior to those of the FLDA and SVM classifiers. In addition, the classification results indicated that gender is insensitive to dysphonia detection, and the sustained phonations of PD patients with minimal functional disability are more difficult to be correctly identified.


2021 ◽  
Author(s):  
Monika Jyotiyana ◽  
Nishtha Kesswani ◽  
Munish Kumar

Abstract Deep learning techniques are playing an important role in the classification and prediction of diseases. Undoubtedly deep learning has a promising future in the health sector, especially in medical imaging. The popularity of deep learning approaches is because of their ability to handle a large amount of data related to the patients with accuracy, reliability in a short span of time. However, the practitioners may take time in analyzing and generating reports. In this paper, we have proposed a Deep Neural Network-based classification model for Parkinson’s disease. Our proposed method is one such good example giving faster and more accurate results for the classification of Parkinson’s disease patients with excellent accuracy of 94.87%. Based on the attributes of the dataset of the patient, the model can be used for the identification of Parkinsonism's. We have also compared the results with other existing approaches like Linear Discriminant Analysis, Support Vector Machine, K-Nearest Neighbor, Decision Tree, Classification and Regression Trees, Random Forest, Linear Regression, Logistic Regression, Multi-Layer Perceptron, and Naive Bayes.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Atiqur Rahman ◽  
Sanam Shahla Rizvi ◽  
Aurangzeb Khan ◽  
Aaqif Afzaal Abbasi ◽  
Shafqat Ullah Khan ◽  
...  

Parkinson’s disease (PD) is one of the most common and serious neurological diseases. Impairments in voice have been reported to be the early biomarkers of the disease. Hence, development of PD diagnostic tool will help early diagnosis of the disease. Additionally, intelligent system developed for binary classification of PD and healthy controls can also be exploited in future as an instrument for prodromal diagnosis. Notably, patients with rapid eye movement (REM) sleep behaviour disorder (RBD) represent a good model as they develop PD with a high probability. It has been shown that slight speech and voice impairment may be a sensitive marker of preclinical PD. In this study, we propose PD detection by extracting cepstral features from the voice signals collected from people with PD and healthy subjects. To classify the extracted features, we propose to use dimensionality reduction through linear discriminant analysis and classification through support vector machine. In order to validate the effectiveness of the proposed method, we also developed ten different machine learning models. It was observed that the proposed method yield area under the curve (AUC) of 88%, sensitivity of 73.33%, and specificity of 84%. Moreover, the proposed intelligent system was simulated using publicly available multiple types of voice database. Additionally, the data were collected from patients under on-state. The obtained results on the public database are promising compared to the previously published work.


2019 ◽  
Vol 11 (24) ◽  
pp. 6954
Author(s):  
Fuqiang Li ◽  
Shiying Zhang ◽  
Wenxuan Li ◽  
Wei Zhao ◽  
Bingkang Li ◽  
...  

In comparison with traditional point forecasting method, probability density forecasting can reflect the load fluctuation more effectively and provides more information. This paper proposes a hybrid hourly power load forecasting model, which integrates K-means clustering algorithm, Salp Swarm Algorithm (SSA), Least Square Support Vector Machine (LSSVM), and kernel density estimation (KDE) method. Firstly, the loads at 24 times a day are grouped into three categories according to the K-means clustering algorithm, which correspond to the valley period, flat period, and peak period of the load, respectively. Secondly, the load point forecasting value is obtained by LSSVM method optimized by SSA algorithm. Furthermore, the kernel density estimation method is employed to fit the forecasting error of SSA-LSSVM in different time periods, and the probability density function of the error distribution is obtained. The final load probability density forecasting result is obtained by combining the point forecasting value and the error fitting result, and then the upper and lower limits of the confidence interval under the given confidence level are solved. In this paper, the performance of the model is evaluated by two indicators named interval coverage and interval average width. Meanwhile, in comparison with several other models, it can be concluded that the proposed model can effectively improve the forecasting effect.


2011 ◽  
Vol 66-68 ◽  
pp. 203-206
Author(s):  
Jing Tang ◽  
Xian Jun Shi ◽  
Wen Guang Zhang

A K-Means kernel density estimation was proposed and it was used in the pretreatment process of circuit fault diagnosis. The unequal division and losing division problem caused by the traditional method are solved by this method. It also avoid the singular problem which is usually caused by the high dimension of characteristic data. A kernel function is designed and it was integrated with fuzzy support vector machine method to solve the classification problem of multi-faults . At last, a solution of optimal bandwidth is given to improve the proposed method.


Sign in / Sign up

Export Citation Format

Share Document