residual voltage
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 43)

H-INDEX

10
(FIVE YEARS 1)

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7949
Author(s):  
Michele Zanoni ◽  
Riccardo Chiumeo ◽  
Liliana Tenti ◽  
Massimo Volta

This paper presents the integration of advanced machine learning techniques in the medium voltage distributed monitoring system QuEEN. This system is aimed to monitor voltage dips in the Italian distribution network mainly for survey and research purposes. For each recorded event it is able to automatically evaluate its residual voltage and duration from the corresponding voltage rms values and provide its “validity” (invalidating any false events caused by voltage transformers saturation) and its “origin”(upstream or downstream from the measurement point) by proper procedures and algorithms (current techniques). On the other hand, in the last years new solutions have been proposed by RSE to improve the assessment of the validity and origin of the event: the DELFI classifier (DEep Learning for False voltage dips Identification) and the FExWaveS + SVM classifier (Features Extraction from Waveform Segmentation + Support Vector Machine classifier). These advanced functionalities have been recently integrated in the monitoring system thanks to the automated software tool called QuEEN PyService. In this work, intensive use of these advanced techniques has been carried out for the first time on a significant number of monitored sites (150) starting from the data recorded from 2018 to 2021. Besides, the comparison between the results of the innovative technique (validity and origin of severe voltage dips) with respect to the current ones has been performed at the macro-regional level too. The new techniques are shown to have a not negligible impact on the severe voltage dips number and confirm a non-homogenous condition among the Italian macro-regional areas.


2021 ◽  
Vol 2087 (1) ◽  
pp. 012071
Author(s):  
Qingliang Zhang ◽  
Hui Sun ◽  
Changchun Zhai ◽  
Xiaowei Chen

Abstract This study focuses on the fault ride through capability of HPR1000 NPP in the UK grid and presents a Simulink-based modelling and simulation of the demonstration. The paper firstly introduces the fault ride through requirements of the UK grid, then describes the modelling process and analyses the simplified part accordingly, and finally analyses a three-phase ground fault with a duration of 140ms and a three-phase ground fault with a residual voltage of 85% and a duration of 180 seconds. The results show that the fluctuations of the plant under various fault ride through scenarios meet the requirements of the UK grid indicating the plant has fault ride through capability in the UK grid.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012113
Author(s):  
V V Kolobov ◽  
M B Barannik ◽  
V V Ivonin

Abstract With the correct choice of the arrester by voltage class and compliance with the calculated protective distance without taking into account the propagation velocity of the current wave on the grounding grid, overvoltages exceeding discharge or residual voltage may occur on the protected equipment, in particular the transformer. Thus, when calculating the installation of the arrester that protects the substation from incoming lightning surges from a transmission lines, it is necessary to take into account the propagation of the current wave on the grounding grid. The propagation velocity of electromagnetic waves in a 150 kV substations grounding grid was measured. The measured wave propagation velocities are in the range of 50–100⋅106 m/s. Thus, the obtained velocity of wave propagation on the grounding grid used in service is several times less than the speed of light. The measured value correlates well with similar experiments conducted for buried conductors located in soils with similar parameters and the results of mathematical modeling for a grounding grid having similar dimensions and mesh size.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012075
Author(s):  
A A Tikhomirov ◽  
N V Sobolev

Abstract Fast reserve supply input systems significantly increase the reliability of power supply due to the possibility of preserving the technological process in case of emergency situations. The accuracy of determining the phase of the residual voltage on the busbar in process of connecting the power reserve supply provides a way to significantly reduce the starting overcurrents. In this paper, some modifications of the annealing method for determining the phase of the residual voltage on main section of busbar for emergency mode are considered. The obtained simulation results based on MATLAB environment make it possible to carry out a comparative analysis of a number of calculations for phase estimation design of automatic transfer switch operations based on simulated annealing.


Author(s):  
R. U. Galeeva ◽  
S. V. Kuksov

PURPOSE. To consider the problems of modeling the processes of run-out, self-starting of a group of asynchronous electric motors (AM) in case of short-term power outages (NEC) and voltage drops in external short circuits (SC), convenient for programming and practical use. To establish the integral reaction of the AM group during self-start to the disturbing effect, taking into account their characteristics and duration to establish the permissible limit values of the NEC. To develop an algorithm for the transient process of self-starting of the AM group when using matrix and vector data representation when solving the basic equation of the rotor motion and its computer implementation. METHODS. When solving the problem, the following methods were used: successive approximations when solving the basic electromechanical equation, taking into account electromagnetic transient processes; Gauss-Seidel method with accelerating the convergence of the iterative process when solving the equations of the parameters of the regime; method of nodal stresses. The algorithm is implemented in VBA and tested in Matlab Simulink. RESULTS. The article describes the relevance of the topic, considers a model of AM according to catalog data, an algorithm for self-starting a group of an AM with NEC and external short circuits, taking into account electromagnetic transient processes, which has high accuracy and is convenient for practical use. CONCLUSION. The use of asynchronous motor catalogs makes it possible not to carry out laborious preliminary calculations of the parameters of asynchronous motors. The application of the Gauss-Seidel method with acceleration of convergence provides a decrease in the number of iterations. Taking into account electromagnetic transients and the effect of displacement of the rotor current allows you to evaluate the mutual influence of motors and increase the accuracy of calculations. The use of the method of nodal voltages makes it possible to determine the residual voltage on the busbar section with AM, if at the first moment the motors are switched on to short circuit. The implementation of the algorithm in the VBA environment is convenient for practical use.


Author(s):  
R. U. Galeeva ◽  
S. V. Kuksov

PURPOSE. To consider the problems of modeling the processes of run-out, self-starting of a group of asynchronous electric motors (AM) in case of short-term power outages (NEC) and voltage drops in external short circuits (SC), convenient for programming and practical use. To establish the integral reaction of the AM group during self-start to the disturbing effect, taking into account their characteristics and duration to establish the permissible limit values of the NEC. To develop an algorithm for the transient process of self-starting of the AM group when using matrix and vector data representation when solving the basic equation of the rotor motion and its computer implementation. METHODS. When solving the problem, the following methods were used: successive approximations when solving the basic electromechanical equation, taking into account electromagnetic transient processes; Gauss-Seidel method with accelerating the convergence of the iterative process when solving the equations of the parameters of the regime; method of nodal stresses. The algorithm is implemented in VBA and tested in Matlab Simulink. RESULTS. The article describes the relevance of the topic, considers a model of AM according to catalog data, an algorithm for self-starting a group of an AM with NEC and external short circuits, taking into account electromagnetic transient processes, which has high accuracy and is convenient for practical use. CONCLUSION. The use of asynchronous motor catalogs makes it possible not to carry out laborious preliminary calculations of the parameters of asynchronous motors. The application of the Gauss-Seidel method with acceleration of convergence provides a decrease in the number of iterations. Taking into account electromagnetic transients and the effect of displacement of the rotor current allows you to evaluate the mutual influence of motors and increase the accuracy of calculations. The use of the method of nodal voltages makes it possible to determine the residual voltage on the busbar section with AM, if at the first moment the motors are switched on to short circuit. The implementation of the algorithm in the VBA environment is convenient for practical use.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3132
Author(s):  
Peerawut Yutthagowith ◽  
Sutee Leejongpermpoon ◽  
Nawakun Triruttanapiruk

A simplified and accurate model of a surge arrester used in the residual voltage test is proposed in this paper. With the help of a genetic algorithm, the measured impulse current and residual voltage waveforms are utilized to determine circuit parameters of the proposed model and the generation circuit precisely. The technique starts from the circuit parameter determination using the preliminary experimental data with a lower current peak than that specified by the standard. From the determined model and with the help of the genetic algorithm, the circuit parameters and the charging voltage to obtain the specified current peak and the residual voltage can be estimated accurately. The validity of the proposed technique has been verified by experiments for the estimation of the appropriate current circuit parameters, the charging voltage, and the residual voltage. In addition, the application of the proposed model in the residual voltage tests is presented. From comparison of simulated and experimental results with the determined parameters, the impulse current and residual voltage waveforms are determined precisely. It is confirmed that the proposed model and technique are attractive in the appropriate circuit parameter determination and the residual voltage estimation in the residual voltage tests of surge arresters. The proposed method also provides a good advantage for reduction of the number of trial and error experiments for obtaining the current waveform according to the standard requirement. Moreover, the unintentional damages of the arrester during the process of the waveform adjustment will be reduced significantly.


Author(s):  
Ashwati Krishnan ◽  
Mats Forssell ◽  
Zhanhong Du ◽  
X. Tracy Cui ◽  
Gary K Fedder ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document