membrane reconstitution
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 7)

H-INDEX

19
(FIVE YEARS 2)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Yiming Niu ◽  
Xiao Tao ◽  
George Vaisey ◽  
Paul D B Olinares ◽  
Hanan Alwaseem ◽  
...  

Mechanosensitive ion channels mediate transmembrane ion currents activated by mechanical forces. A mechanosensitive ion channel called TACAN was recently reported. We began to study TACAN with the intent to understand how it senses mechanical forces and functions as an ion channel. Using cellular patch-recording methods we failed to identify mechanosensitive ion channel activity. Using membrane reconstitution methods we found that TACAN, at high protein concentrations, produces heterogeneous conduction levels that are not mechanosensitive and are most consistent with disruptions of the lipid bilayer. We determined the structure of TACAN using single particle cryo-EM and observe that it forms a symmetrical dimeric transmembrane protein. Each protomer contains an intracellular-facing cleft with a coenzyme-A cofactor, confirmed by mass spectrometry. The TACAN protomers are related in 3-dimensional structure to a fatty acid elongase, ELOVL. Whilst its physiological function remains unclear, we anticipate that TACAN is not a mechanosensitive ion channel.


2021 ◽  
Author(s):  
Yiming Niu ◽  
Xiao Tao ◽  
George Vaisey ◽  
Paul Dominic B. Olinares ◽  
Hanan Alwaseem ◽  
...  

Mechanosensitive ion channels mediate transmembrane ion currents activated by mechanical forces. A mechanosensitive ion channel called TACAN was recently reported. We began to study TACAN with the intent to understand how it senses mechanical forces and functions as an ion channel. Using cellular patch-recording methods we failed to identify mechanosensitive ion channel activity. Using membrane reconstitution methods we found that TACAN, at high protein concentrations, produces non-selective, heterogeneous conduction levels that are not mechanosensitive and are most consistent with disruptions of the lipid bilayer. We determined the structure of TACAN using single particle cryo-EM and observe that it forms a symmetrical dimeric transmembrane protein. Each protomer contains an intracellular-facing cleft with a coenzyme-A co-factor, confirmed by mass spectrometry. The TACAN protomers are related in 3-dimensional structure to a fatty acid elongase, ELOVL. Whilst its physiological function remains unclear, we anticipate that TACAN is not a mechanosensitive ion channel.


2020 ◽  
Author(s):  
M’Lynn E. Fisher ◽  
Elisa Bovo ◽  
Ellen E. Cho ◽  
Marsha P. Pribadi ◽  
Michael P. Dalton ◽  
...  

ABSTRACTThe cardiac sarcoplasmic reticulum calcium pump, SERCA, sequesters calcium in the sarco-endoplasmic reticulum (SR/ER) and plays a critical role in the contraction-relaxation cycle of the heart. A well-known regulator of SERCA in cardiac muscle is phospholamban (PLN), which interacts with the pump and reduces its apparent calcium affinity. A newly discovered SERCA regulatory subunit in cardiac muscle, dwarf open reading frame (DWORF), has added a new level of SERCA regulation. In this report, we modeled the structure of DWORF and evaluated it using molecular dynamics simulations. DWORF structure was modeled as a discontinuous helix with an unwound region at Pro15. This model orients an N-terminal amphipathic helix along the membrane surface and leaves a relatively short C-terminal transmembrane helix. We determined the functional regulation of SERCA by DWORF using a membrane reconstitution system. Surprisingly, we observed that DWORF directly activated SERCA by increasing its turnover rate. Furthermore, in-cell imaging of calcium dynamics demonstrated that DWORF increased SERCA-dependent ER calcium load, calcium reuptake rate, and spontaneous calcium release. Together, these functional assays suggest opposing effects of DWORF and PLN on SERCA function. The results agree with fluorescence resonance energy transfer experiments, which revealed changes in the affinity of DWORF for SERCA at low versus high cytosolic calcium concentrations. We found that DWORF has a higher affinity for SERCA in the presence of calcium, while PLN had the opposite behavior, a higher affinity for SERCA in low calcium. We propose a new mechanism for DWORF regulation of cardiac calcium handling in which DWORF directly enhances SERCA turnover by stabilizing the conformations of SERCA that predominate during elevated cytosolic calcium.


2020 ◽  
Vol 295 (13) ◽  
pp. 4277-4288 ◽  
Author(s):  
Tiphaine Péresse ◽  
David Kovacs ◽  
Mélody Subra ◽  
Joëlle Bigay ◽  
Meng-Chen Tsai ◽  
...  

ORPphilins are bioactive natural products that strongly and selectively inhibit the growth of some cancer cell lines and are proposed to target intracellular lipid-transfer proteins of the oxysterol-binding protein (OSBP) family. These conserved proteins exchange key lipids, such as cholesterol and phosphatidylinositol 4-phosphate (PI(4)P), between organelle membranes. Among ORPphilins, molecules of the schweinfurthin family interfere with intracellular lipid distribution and metabolism, but their functioning at the molecular level is poorly understood. We report here that cell line sensitivity to schweinfurthin G (SWG) is inversely proportional to cellular OSBP levels. By taking advantage of the intrinsic fluorescence of SWG, we followed its fate in cell cultures and show that its incorporation at the trans-Golgi network depends on cellular abundance of OSBP. Using in vitro membrane reconstitution systems and cellular imaging approaches, we also report that SWG inhibits specifically the lipid transfer activity of OSBP. As a consequence, post-Golgi trafficking, membrane cholesterol levels, and PI(4)P turnover were affected. Finally, using intermolecular FRET analysis, we demonstrate that SWG directly binds to the lipid-binding cavity of OSBP. Collectively these results describe SWG as a specific and intrinsically fluorescent pharmacological tool for dissecting OSBP properties at the cellular and molecular levels. Our findings indicate that SWG binds OSBP with nanomolar affinity, that this binding is sensitive to the membrane environment, and that SWG inhibits the OSBP-catalyzed lipid exchange cycle.


2020 ◽  
Vol 8 (2) ◽  
pp. 256
Author(s):  
Zhong Zhang ◽  
Wenting Zhang ◽  
Yang Bi ◽  
Ye Han ◽  
Yuanyuan Zong ◽  
...  

Trichothecium roseum is a harmful postharvest fungus causing serious damage, together with the secretion of insidious mycotoxins, on apples, melons, and other important fruits. Cuminal, a predominant component of Cuminum cyminum essential oil has proven to successfully inhibit the growth of T. roseum in vitro and in vivo. Electron microscopic observations revealed cuminal exposure impaired the fungal morphology and ultrastructure, particularly the plasmalemma. Transcriptome and proteome analysis was used to investigate the responses of T. roseum to exposure of cuminal. In total, 2825 differentially expressed transcripts (1516 up and 1309 down) and 225 differentially expressed proteins (90 up and 135 down) were determined. Overall, notable parts of these differentially expressed genes functionally belong to subcellular localities of the membrane system and cytosol, along with ribosomes, mitochondria and peroxisomes. According to the localization analysis and the biological annotation of these genes, carbohydrate and lipids metabolism, redox homeostasis, and asexual reproduction were among the most enriched gene ontology (GO) terms. Biological pathway enrichment analysis showed that lipids and amino acid degradation, ATP-binding cassette transporters, membrane reconstitution, mRNA surveillance pathway and peroxisome were elevated, whereas secondary metabolite biosynthesis, cell cycle, and glycolysis/gluconeogenesis were down regulated. Further integrated omics analysis showed that cuminal exposure first impaired the polarity of the cytoplasmic membrane and then triggered the reconstitution and dysfunction of fungal plasmalemma, resulting in handicapped nutrient procurement of the cells. Consequently, fungal cells showed starvation stress with limited carbohydrate metabolism, resulting a metabolic shift to catabolism of the cell’s own components in response to the stress. Additionally, these predicaments brought about oxidative stress, which, in collaboration with the starvation, damaged certain critical organelles such as mitochondria. Such degeneration, accompanied by energy deficiency, suppressed the biosynthesis of essential proteins and inhibited fungal growth.


Langmuir ◽  
2018 ◽  
Vol 34 (36) ◽  
pp. 10764-10773
Author(s):  
Liulin Wang ◽  
Kabir H. Biswas ◽  
Bo Kyeong Yoon ◽  
Lisa M. Kawakami ◽  
Soohyun Park ◽  
...  

2017 ◽  
Vol 313 (1) ◽  
pp. H66-H71 ◽  
Author(s):  
Patricia Zamorano ◽  
Natalie Marín ◽  
Francisco Córdova ◽  
Alejandra Aguilar ◽  
Cynthia Meininger ◽  
...  

We tested the hypothesis that platelet-activating factor (PAF) induces S-nitrosylation of vasodilator-stimulated phosphoprotein (VASP) as a mechanism to reduce microvascular endothelial barrier integrity and stimulate hyperpermeability. PAF elevated S-nitrosylation of VASP above baseline levels in different endothelial cells and caused hyperpermeability. To ascertain the importance of endothelial nitric oxide synthase (eNOS) subcellular location in this process, we used ECV-304 cells transfected with cytosolic eNOS (GFPeNOSG2A) and plasma membrane eNOS (GFPeNOSCAAX). PAF induced S-nitrosylation of VASP in cells with cytosolic eNOS but not in cells wherein eNOS is anchored to the cell membrane. Reconstitution of VASP knockout myocardial endothelial cells with cysteine mutants of VASP demonstrated that S-nitrosylation of cysteine 64 is associated with PAF-induced hyperpermeability. We propose that regulation of VASP contributes to endothelial cell barrier integrity and to the onset of hyperpermeability. S-nitrosylation of VASP inhibits its function in barrier integrity and leads to endothelial monolayer hyperpermeability in response to PAF, a representative proinflammatory agonist. NEW & NOTEWORTHY Here, we demonstrate that S-nitrosylation of vasodilator-stimulated phosphoprotein (VASP) on C64 is a mechanism for the onset of platelet-activating factor-induced hyperpermeability. Our results reveal a dual role of VASP in endothelial permeability. In addition to its well-documented function in barrier integrity, we show that S-nitrosylation of VASP contributes to the onset of endothelial permeability.


2016 ◽  
Vol 65 (2) ◽  
pp. 87-98 ◽  
Author(s):  
Marie-Laure Fogeron ◽  
Vlastimil Jirasko ◽  
Susanne Penzel ◽  
David Paul ◽  
Roland Montserret ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document