A number of e-voting systems have been proposed in the last decades, attracting the interest of the research community. The challenge is far from being fully addressed, especially for remote systems. In this work, we propose DiverSEC, a distributed, remote e-voting system based on Shamir secret sharing, operations in Galois field and mixnets, which enables end-to-end vote verification. Parties participate as nodes in the network, protecting their interests and ensuring process integrity due to the conflicting interests. The threat model is very conservative, not letting even the most privileged actors to compromise votes privacy or integrity. Security in depth is implemented, overlapping different mechanisms to offer guarantees even in the most adverse operating conditions. The main contributions of the resulting system are our proposal for secret-sharing among the political parties, which guarantees that no party can compromise the integrity of the ballot without being detected and identified in real time, and the computational and architectural scalability of the proposal, which make it easy to implement.