chiral synthesis
Recently Published Documents


TOTAL DOCUMENTS

579
(FIVE YEARS 10)

H-INDEX

44
(FIVE YEARS 3)

Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 973
Author(s):  
Natàlia Alcover ◽  
Gregorio Álvaro ◽  
Marina Guillén

Asymmetric synthesis of chiral amines from prochiral ketones using transaminases is an attractive biocatalytic strategy. Nevertheless, it is hampered by its unfavorable thermodynamic equilibrium. In the present work, an insitu by-product removal strategy was applied for the synthesis of 3-amino-1-phenylbutane (3-APB) by coupling a transaminase with a pyruvate decarboxylase (PDC), which does not require the use of any expensive additional cofactor. Using this strategy, the pyruvate obtained in the transamination reaction is transformed by PDC into acetaldehyde and CO2 which are of high volatility. Two different transaminases from Chromobacterium violaceum (CviTA) and Vibrio fluvialis (VflTA) were characterized to find out the appropriate pH conditions. In both cases, the addition of PDC dramatically enhanced 3-APB synthesis. Afterwards, different reaction conditions were tested to improve reaction conversion and yield. It was concluded that 30 °C and a 20-fold alanine excess lead to the best process metrics. Under the mentioned conditions, yields higher than 60% were reached with nearly 90% selectivity using both CviTA and VflTA. Moreover, high stereoselectivity for (S)-3-APB was obtained and ee of around 90% was achieved in both cases. For the first time, the asymmetric synthesis of 3-APB using PDC as by-product removal system using CviTA is reported.


2020 ◽  
Author(s):  
Junchao Rao ◽  
Rongzhen Zhang ◽  
Guanyu Xu ◽  
Lihong Li ◽  
Yan Xu

Abstract Background: ( S )-1-phenyl-1,2-ethanediol is an important chiral intermediate in the synthesis of liquid crystals and chiral biphosphines.(S)-carbonyl reductase II from Candida parapsilosis catalyzes the conversion of 2-hydroxyacetophenone to ( S )-1-phenyl-1,2-ethanediol with NADPH as a cofactor. Glucose dehydrogenase with a Ala258Phe mutation is able to catalyze the oxidation of xylose with concomitant reduction of NADP + to NADPH, while endo-β-1,4-xylanase 2 catalyzes the conversion of xylan to xylose. In the present work, the Ala258Phe glucose dehydrogenase mutant and endo-β-1,4-xylanase 2 were introduced into the ( S )-carbonyl reductase II-mediated chiral pathway to strengthen cofactor regeneration by using xylan as a naturally abundant co-substrate. Results: We constructed several coupled multi-enzyme systems by introducing ( S )-carbonyl reductase II, the A258F glucose dehydrogenase mutant and endo-β-1,4-xylanase 2 into Escherichia coli . Different strains were produced by altering the location of the encoding genes on the plasmid. Only recombinant E. coli /pET-G-S-2 expressed all three enzymes, and this strain produced ( S )-1-phenyl-1,2-ethanediol from 2-hydroxyacetophenone as a substrate and xylan as a co-substrate. The optical purity was 100% and the yield was 98.3% (6 g/L 2-HAP) under optimal conditions of 35°C, pH 6.5 and a 2:1 substrate-co-substrate ratio. The introduction of A258F glucose dehydrogenase and endo-β-1,4-xylanase 2 into the ( S )-carbonyl reductase II-mediated chiral pathway caused a 54.6% increase in yield, and simultaneously reduced the reaction time from 48 h to 28 h. Conclusions: This study demonstrates efficient chiral synthesis using a pentose as a co-substrate to enhance cofactor regeneration. This provides a new approach for enantiomeric catalysis through the inclusion of naturally abundant materials.


2020 ◽  
Vol 85 (5) ◽  
pp. 3709-3716
Author(s):  
Yang Chen ◽  
Siqi Li ◽  
Shili Hou ◽  
Jiaxi Xu ◽  
Zhanhui Yang
Keyword(s):  

2020 ◽  
Author(s):  
Junchao Rao ◽  
Rongzhen Zhang ◽  
Guanyu Xu ◽  
Lihong Li ◽  
Yan Xu

Abstract Background: ( S )-1-phenyl-1,2-ethanediol is an important chiral intermediate in the synthesis of liquid crystals and chiral biphosphines. ( S )-carbonyl reductase II from Candida parapsilosis catalyzes the conversion of 2-hydroxyacetophenone to ( S )-1-phenyl-1,2-ethanediol with NADPH as a cofactor. Glucose dehydrogenase with a Ala258Phe mutation is able to catalyze the oxidation of xylose with concomitant reduction of NADP + to NADPH, while endo-β-1,4-xylanase 2 catalyzes the conversion of xylan to xylose. In the present work, the Ala258Phe glucose dehydrogenase mutant and endo-β-1,4-xylanase 2 were introduced into the ( S )-carbonyl reductase II-mediated chiral pathway to strengthen cofactor regeneration by using xylan as a naturally abundant co-substrate. Results: We constructed several coupled multi-enzyme systems by introducing ( S )-carbonyl reductase II, the A258F glucose dehydrogenase mutant and endo-β-1,4-xylanase 2 into Escherichia coli . Different strains were produced by altering the location of the encoding genes on the plasmid. Only recombinant E. coli /pET-G-S-2 expressed all three enzymes, and this strain produced ( S )-1-phenyl-1,2-ethanediol from 2-hydroxyacetophenone as a substrate and xylan as a co-substrate. The optical purity was 100% and the yield was 98.3% under optimal conditions of 35°C, pH 6.5 and a 2:1 substrate-co-substrate ratio. The introduction of A258F glucose dehydrogenase and endo-β-1,4-xylanase 2 into the ( S )-carbonyl reductase II-mediated chiral pathway caused a 54.6% increase in yield, and simultaneously reduced the reaction time from 48 h to 28 h. Conclusions: This study demonstrates efficient chiral synthesis using a pentose as a co-substrate to enhance cofactor regeneration. This provides a new approach for enantiomeric catalysis through the inclusion of naturally abundant materials.


2019 ◽  
Vol 2 (10) ◽  
pp. 909-915 ◽  
Author(s):  
Markus Schober ◽  
Chris MacDermaid ◽  
Anne A. Ollis ◽  
Sandy Chang ◽  
Diluar Khan ◽  
...  

2019 ◽  
Vol 289 ◽  
pp. 1-6 ◽  
Author(s):  
Annesha Sengupta ◽  
Avinash Vellore Sunder ◽  
Sujata V. Sohoni ◽  
Pramod P. Wangikar

Sign in / Sign up

Export Citation Format

Share Document