The effect of CO2 in enhancing photosynthetic cofactor recycling for alcohol dehydrogenase mediated chiral synthesis in cyanobacteria

2019 ◽  
Vol 289 ◽  
pp. 1-6 ◽  
Author(s):  
Annesha Sengupta ◽  
Avinash Vellore Sunder ◽  
Sujata V. Sohoni ◽  
Pramod P. Wangikar
Author(s):  
Aileen Becker ◽  
Dominique Böttcher ◽  
Werner Katzer ◽  
Karsten Siems ◽  
Lutz Müller-Kuhrt ◽  
...  

Abstract Raspberry ketone is a widely used flavor compound in food and cosmetic industry. Several processes for its biocatalytic production have already been described, but either with the use of genetically modified organisms (GMOs) or incomplete conversion of the variety of precursors that are available in nature. Such natural precursors are rhododendrol glycosides with different proportions of (R)- and (S)-rhododendrol depending on the origin. After hydrolysis of these rhododendrol glycosides, the formed rhododendrol enantiomers have to be oxidized to obtain the final product raspberry ketone. To be able to achieve a high conversion with different starting material, we assembled an alcohol dehydrogenase toolbox that can be accessed depending on the optical purity of the intermediate rhododendrol. This is demonstrated by converting racemic rhododendrol using a combination of (R)- and (S)-selective alcohol dehydrogenases together with a universal cofactor recycling system. Furthermore, we conducted a biocatalytic cascade reaction starting from naturally derived rhododendrol glycosides by the use of a glucosidase and an alcohol dehydrogenase to produce raspberry ketone in high yield. Key points • LB-ADH, LK-ADH and LS-ADH oxidize (R)-rhododendrol • RR-ADH and ADH1E oxidize (S)-rhododendrol • Raspberry ketone production via glucosidase and alcohol dehydrogenases from a toolbox Graphical abstract


2008 ◽  
Vol 413 (3) ◽  
pp. 493-504 ◽  
Author(s):  
Claudia A. Staab ◽  
Johan Ålander ◽  
Margareta Brandt ◽  
Johan Lengqvist ◽  
Ralf Morgenstern ◽  
...  

GSNO (S-nitrosoglutathione) is emerging as a key regulator in NO signalling as it is in equilibrium with S-nitrosated proteins. Accordingly, it is of great interest to investigate GSNO metabolism in terms of competitive pathways and redox state. The present study explored ADH3 (alcohol dehydrogenase 3) in its dual function as GSNOR (GSNO reductase) and glutathione-dependent formaldehyde dehydrogenase. The glutathione adduct of formaldehyde, HMGSH (S-hydroxymethylglutathione), was oxidized with a kcat/Km value approx. 10 times the kcat/Km value of GSNO reduction, as determined by fluorescence spectroscopy. HMGSH oxidation in vitro was greatly accelerated in the presence of GSNO, which was concurrently reduced under cofactor recycling. Hence, considering the high cytosolic NAD+/NADH ratio, formaldehyde probably triggers ADH3-mediated GSNO reduction by enzyme-bound cofactor recycling and might result in a decrease in cellular S-NO (S-nitrosothiol) content in vivo. Formaldehyde exposure affected S-NO content in cultured cells with a trend towards decreased levels at concentrations of 1–5 mM, in agreement with the proposed mechanism. Product formation after GSNO reduction to the intermediate semimercaptal responded to GSH/GSNO ratios; ratios up to 2-fold allowed the spontaneous rearrangement to glutathione sulfinamide, whereas 5-fold excess of GSH favoured the interception of the intermediate to form glutathione disulfide. The sulfinamide and its hydrolysis product, glutathione sulfinic acid, inhibited GST (glutathione transferase) activity. Taken together, the findings of the present study provide indirect evidence for formaldehyde as a physiological trigger of GSNO depletion and show that GSNO reduction can result in the formation of GST inhibitors, which, however, is prevented under normal cellular redox conditions.


Tetrahedron ◽  
2004 ◽  
Vol 60 (3) ◽  
pp. 633-640 ◽  
Author(s):  
Harald Gröger ◽  
Werner Hummel ◽  
Claudia Rollmann ◽  
Francoise Chamouleau ◽  
Hendrik Hüsken ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document