scholarly journals Probing charged lepton flavor violation with axion-like particles at Belle II

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Kingman Cheung ◽  
Abner Soffer ◽  
Zeren Simon Wang ◽  
Yu-Heng Wu

Abstract We study charged lepton flavor violation associated with a light leptophilic axion-like particle (ALP), X, at the B-factory experiment Belle II. We focus on production of the ALP in the tau decays τ → Xl with l = e, μ, followed by its decay via X → l−l+. The ALP can be either promptly decaying or long-lived. We perform Monte-Carlo simulations, recasting a prompt search at Belle for lepton-flavor-violating τ decays, and propose a displaced-vertex (DV) search. For both types of searches, we derive the Belle II sensitivity reaches in both the product of branching fractions and the ALP coupling constants, as functions of the ALP mass and lifetime. The results show that the DV search exceeds the sensitivity reach of the prompt search to the relevant branching fractions by up to about a factor of 40 in the long decay length regime.

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
◽  
K. Uno ◽  
K. Hayasaka ◽  
K. Inami ◽  
I. Adachi ◽  
...  

Abstract Charged lepton flavor violation is forbidden in the Standard Model but possible in several new physics scenarios. In many of these models, the radiative decays τ± → ℓ±γ (ℓ = e, μ) are predicted to have a sizeable probability, making them particularly interesting channels to search at various experiments. An updated search via τ± → ℓ±γ using full data of the Belle experiment, corresponding to an integrated luminosity of 988 fb−1, is reported for charged lepton flavor violation. No significant excess over background predictions from the Standard Model is observed, and the upper limits on the branching fractions, $$ \mathcal{B} $$ B (τ± → μ±γ) ≤ 4.2 × 10−8 and $$ \mathcal{B} $$ B (τ± → e±γ) ≤ 5.6 × 10−8, are set at 90% confidence level.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Vincenzo Cirigliano ◽  
Kaori Fuyuto ◽  
Christopher Lee ◽  
Emanuele Mereghetti ◽  
Bin Yan

Abstract We present a comprehensive analysis of the potential sensitivity of the Electron-Ion Collider (EIC) to charged lepton flavor violation (CLFV) in the channel ep→τX, within the model-independent framework of the Standard Model Effective Field Theory (SMEFT). We compute the relevant cross sections to leading order in QCD and electroweak corrections and perform simulations of signal and SM background events in various τ decay channels, suggesting simple cuts to enhance the associated estimated efficiencies. To assess the discovery potential of the EIC in τ-e transitions, we study the sensitivity of other probes of this physics across a broad range of energy scales, from pp→eτX at the Large Hadron Collider to decays of B mesons and τ leptons, such as τ→eγ, τ→eℓ+ℓ−, and crucially the hadronic modes τ→eY with Y∈π, K, ππ, Kπ, …. We find that electroweak dipole and four-fermion semi-leptonic operators involving light quarks are already strongly constrained by τ decays, while operators involving the c and b quarks present more promising discovery potential for the EIC. An analysis of three models of leptoquarks confirms the expectations based on the SMEFT results. We also identify future directions needed to maximize the reach of the EIC in CLFV searches: these include an optimization of the τ tagger in hadronic channels, an exploration of background suppression through tagging b and c jets in the final state, and a global fit by turning on all SMEFT couplings, which will likely reveal new discovery windows for the EIC.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Stefan Antusch ◽  
A. Hammad ◽  
Ahmed Rashed

Abstract We investigate the sensitivity of electron-proton (ep) colliders for charged lepton flavor violation (cLFV) in an effective theory approach, considering a general effective Lagrangian for the conversion of an electron into a muon or a tau via the effective coupling to a neutral gauge boson or a neutral scalar field. For the photon, the Z boson and the Higgs particle of the Standard Model, we present the sensitivities of the LHeC for the coefficients of the effective operators, calculated from an analysis at the reconstructed level. As an example model where such flavor changing neutral current (FCNC) operators are generated at loop level, we consider the extension of the Standard Model by sterile neutrinos. We show that the LHeC could already probe the LFV conversion of an electron into a muon beyond the current experimental bounds, and could reach more than an order of magnitude higher sensitivity than the present limits for LFV conversion of an electron into a tau. We discuss that the high sensitivities are possible because the converted charged lepton is dominantly emitted in the backward direction, enabling an efficient separation of the signal from the background.


Author(s):  
Naoyuki Haba ◽  
Yasuhiro Shimizu ◽  
Toshifumi Yamada

Abstract We present a model that gives a natural explanation to the charged lepton mass hierarchy and study the contributions to the electron and the muon $g-2$. In the model, we introduce lepton-flavor-dependent $U(1)_F$ symmetry and three additional Higgs doublets with $U(1)_F$ charges, to realize that each generation of charged leptons couples to one of the three additional Higgs doublets. The $U(1)_F$ symmetry is softly broken by $+1$ charges, and the smallness of the soft breaking naturally gives rise to the hierarchy of the Higgs vacuum expectation values, which then accounts for the charged lepton mass hierarchy. Since electron and muon couple to different scalar particles, each scalar contributes to the electron and the muon $g-2$ differently. We survey the space of parameters of the Higgs sector and find that there are sets of parameters that explain the muon $g-2$ discrepancy. On the other hand, we cannot find parameter sets that can explain the $g-2$ discrepancy within 2 $\sigma$. Here, the $U(1)_F$ symmetry suppresses charged lepton flavor violation.


2020 ◽  
Vol 35 (19) ◽  
pp. 2030007
Author(s):  
Manolis Kargiantoulakis

The Mu2e experiment will search for the neutrino-less conversion of a muon into an electron in the field of an aluminum nucleus. An observation would be the first signal of charged lepton flavor violation and de facto evidence for new physics beyond the Standard Model. The clean signature of the conversion process offers an opportunity for a powerful search: Mu2e will probe four orders of magnitude beyond current limits, with real discovery potential over a wide range of well-motivated new physics models. This goal requires an integrated system of solenoids that will create the most intense muon beam in the world, and suppression of all possible background sources. The Mu2e components are currently being constructed, with the experiment planned to begin operations in the Fermilab Muon Campus within the next few years.


2014 ◽  
Vol 89 (5) ◽  
Author(s):  
Frank F. Deppisch ◽  
Nishita Desai ◽  
José W. F. Valle

Sign in / Sign up

Export Citation Format

Share Document