nonuniform plasma
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 11)

H-INDEX

21
(FIVE YEARS 2)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 146
Author(s):  
José Tito Mendonça ◽  
Camilla Willim ◽  
Jorge Vieira

This work considers twisted wave propagation in inhomogeneous and unmagnetised plasma, and discusses the wave properties in the cutoff region. The qualitative differences between twisted waves described by a single Laguerre–Gauss (LG) mode, and light springs resulting from the superposition of two or more LG modes with different frequency and helicity are studied. The peculiar properties displayed by these waves in the nonuniform plasma are discussed. The pulse envelope of a light-spring shows a contraction at reflection, which resembles that of a compressed mechanical spring. The case of normal incidence is examined, and nonlinear ponderomotive effects are discussed, using theory and simulations.


2021 ◽  
Author(s):  
Igor Timofeev ◽  
Vladimir Annenkov ◽  
Evgeniia Volchok ◽  
Vladimir Glinskiy

Abstract The paper presents the results of numerical simulations of the collective relaxation of an electron beam in a magnetized plasma at the parameters typical to experiments on the ignition of a beam-plasma discharge in the Gas Dynamic Trap. The goal of these simulations is to confirm the ideas about the mechanism of the discharge development, which are used to interpret the results of recent laboratory experiments [Soldatkina et al 2021 {\it Nucl. Fusion}]. In particular, a characteristic feature of these experiments is the localization of the beam relaxation region in the vicinity of the entrance mirror. A strong mirror magnetic field compresses the beam so that its transverse size becomes less than the wavelength it excites. In addition, near the mirror, the electron cyclotron frequency is much higher than the plasma one, which can significantly affect the possibility of propagation of the most unstable waves outside the beam. Particle-in-cell simulations make it possible not only to find how efficiently intense plasma oscillations penetrate the rarefied periphery, but also to prove that the turbulent zone in a realistic nonuniform plasma has regions dominated by transverse electric fields. This creates the necessary conditions for efficient acceleration of the trapped particles to energies much higher than the initial beam energy.


2020 ◽  
Vol 48 (12) ◽  
pp. 4112-4118
Author(s):  
Haiyun Tan ◽  
Mingjie Zhou ◽  
Lanjian Zhuge ◽  
Chenggang Jin ◽  
Xuemei Wu

Sign in / Sign up

Export Citation Format

Share Document