category cluster
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 764
Author(s):  
Aishajiang Aili ◽  
Jilili Abuduwaili ◽  
Hailiang Xu ◽  
Xinfeng Zhao ◽  
Xinghong Liu

The Aral Sea basin is the most active source of salt-dust storms in the central Asian region, while its exposed bottom is acting as a “distributer” of salts and chemicals over the adjoining areas. In this study, the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT-4) is used to identify the trajectories of air parcels from the dried bottom of the Aral Sea region (45.40° N, 61.30° E) that are potentially containing salt-dust and their probability of influencing the downwind area in the period of 2016–2020. The frequency of air parcel trajectory was mapped for six levels: 100, 300, 500, 1000, 2000, and 3000 m agl. The trajectories were categorized by k-means clustering into four clusters that are named by their direction of movement as follows: Cluster 1: E category, Cluster 2: NE category, Cluster 3: W category, and the Cluster 4: S category. The 72 h of forward trajectories showed that salt-dust storms starting from the dried bottom of the Aral Sea had the highest probability of affecting the northeastern region e.g., Siberian Plain, followed by the southern region e.g., Iran Plateau. Total number of trajectories within these two clusters (NE and S) accounts for 90% (or 413 days) of trajectories in examined days. The main area of influence of salt-dust is close to the source area. The potential transport distance of salt-dust particles increases with the height of the starting point. The surface wind, which results from the changes of the Siberian High (SH), has a major role in shaping the surface atmospheric circulation which determines the transport pathway of salt-dust particles over the Aral Sea region. The results of this study could be useful to forecast the potential occurrence of salt-dust storms in downwind affected areas and would also be helpful to understand the possible causes of salt-dust storms which can provide the scientific basis for mitigation of the negative impact of salt-dust storms on the environment and human health. Further research should be conducted by using monitoring data to confirm the deposition of dust and salt particles in those areas mapped by our study.


2017 ◽  
Vol 100 (6) ◽  
pp. 1804-1813 ◽  
Author(s):  
Habib Shirzad ◽  
Vahid Niknam ◽  
Mehdi Taheri ◽  
Hassan Ebrahimzadeh

Abstract The present study investigated variations in extra virgin olive oils in relation to fatty acid (FA) composition and the characteristics of 10 olive cultivars. The findings demonstrated that their oil yield properties, including refractive index, acid value, peroxide value, saponification value, iodine value, and composition, were significantly different. Moreover, based on GC-MS analysis, the presence of oleic acid [C18:1(9)] was identified as one of the major components. The highest amount of 18:1(9) was found in four major varieties of cultivars, namely Zard, Roghani, Karidolia, and Korfolia. Hierarchical cluster analysis of principal component analysis revealed two distinct categories of cultivars based on their FAs. The first category (cluster I), consisted of Arbequina, Karydolia, Roghani, and Zard cultivars, which can be considered cultivars with good commercial cultivation potential due to their high contents of unsaturated FAs and oil quantities produced.


2003 ◽  
Vol 155 (3-4) ◽  
pp. 181-197 ◽  
Author(s):  
Mei-Ling Shyu ◽  
Choochart Haruechaiyasak ◽  
Shu-Ching Chen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document