queen mandibular pheromone
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 2)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Mackenzie R Lovegrove ◽  
Elizabeth J Duncan ◽  
Peter K Dearden

Eusocial insect societies are defined by the reproductive division of labour, a social structure that is generally enforced by the reproductive dominant or queen. Reproductive dominance is maintained through behavioural dominance in some species as well as production of queen pheromones in others, or a mixture of both. Queen mandibular pheromone (QMP) is produced by honeybee (Apis mellifera) queens and has been characterised chemically. How QMP acts to repress worker reproduction, and how it has evolved this activity, remains less well understood. Surprisingly, QMP is capable of repressing reproduction in non-target arthropods which have not co-evolved with QMP, are never exposed to QMP in nature, and are up to 530 million years diverged from the honeybee. Here we show that, in Drosophila melanogaster, QMP treatment mimics nutrient limiting conditions, leading to disrupted reproduction. Exposure to QMP induces an increase in food consumption, consistent with that observed in D. melanogaster in response to starvation conditions. This response induces the activation of two checkpoints within the ovary that inhibit oogenesis. The first is the 2a/b ovarian checkpoint in the germarium, which reduces the flow of presumptive oocytes. A stage 9 ovarian checkpoint is also activated, causing degradation of oocytes. The magnitude of activation of both checkpoints is indistinguishable between QMP treated and starved individuals. As QMP seems to trigger a starvation response in an insect highly diverged from honeybees, we propose that QMP originally evolved by co-opting nutrition signalling pathways to regulate reproduction, a key step in the evolution of eusociality.



2020 ◽  
Vol 16 (12) ◽  
pp. 20200440
Author(s):  
Carlos Antônio Mendes Cardoso-Junior ◽  
Isobel Ronai ◽  
Klaus Hartfelder ◽  
Benjamin P. Oldroyd

Pheromones are used by many insects to mediate social interactions. In the highly eusocial honeybee ( Apis mellifera ), queen mandibular pheromone (QMP) is involved in the regulation of the reproductive and other behaviour of workers. The molecular mechanisms by which QMP acts are largely unknown. Here, we investigate how genes responsible for epigenetic modifications to DNA, RNA and histones respond to the presence of QMP in the environment. We show that several of these genes are upregulated in the honeybee brain when workers are exposed to artificial QMP. We propose that pheromonal communication systems, such as those used by social insects, evolved to respond to environmental signals by making use of existing epigenomic machineries.





Author(s):  
Sarah A Princen ◽  
Annette Van Oystaeyen ◽  
Clément Petit ◽  
Jelle S van Zweden ◽  
Tom Wenseleers

Abstract The evolutionary origin of queen pheromones (QPs), which regulate reproductive division of labor in insect societies, has been explained by two evolutionary scenarios: the sender-precursor hypothesis and the sensory exploitation hypothesis. These scenarios differ in terms of whether the signaling system was built on preadaptations on the part of either the sender queens or the receiver workers. While some social insect QPs—such as cuticular hydrocarbons—were likely derived from ancestral fertility cues and evolved according to the former theory, the honeybee’s queen mandibular pheromone (QMP) has been suggested to act directly on preexisting gene-regulatory networks linked with reproduction. This is evidenced by the fact that QMP has been shown to also inhibit ovary activation in fruit flies, thereby implying exploitation of conserved physiological pathways. To verify whether QMP has similar effects on more closely related eusocial species, we here tested for QMP cross-activity in the bumblebee Bombus terrestris. Interestingly, we found that the non-native QMP blend significantly inhibited egg laying in both worker and queen bumblebees and caused accompanying shifts in ovary activation. The native bumblebee QP pentacosane, by contrast, only inhibited the reproduction of the workers. Overall, these findings support the hypothesis that honeybee QMP likely evolved via a route of sensory exploitation. We argue that such exploitation could allow social insect queens to produce compounds that manipulate the workers to remain sterile, but that a major hurdle would be that the queens themselves would have to be immune to such compounds.





2019 ◽  
Vol 286 (1905) ◽  
pp. 20190517 ◽  
Author(s):  
Sarah A. Princen ◽  
Ricardo Caliari Oliveira ◽  
Ulrich R. Ernst ◽  
Jocelyn G. Millar ◽  
Jelle S. van Zweden ◽  
...  

Queen pheromones, which signal the presence of a fertile queen and induce workers to remain sterile, play a key role in regulating reproductive division of labour in insect societies. In the honeybee, volatiles produced by the queen's mandibular glands have been argued to act as the primary sterility-inducing pheromones. This contrasts with evidence from other groups of social insects, where specific queen-characteristic hydrocarbons present on the cuticle act as conserved queen signals. This led us to hypothesize that honeybee queens might also employ cuticular pheromones to stop workers from reproducing. Here, we support this hypothesis with the results of bioassays with synthetic blends of queen-characteristic alkenes, esters and carboxylic acids. We show that all these compound classes suppress worker ovary development, and that one of the blends of esters that we used was as effective as the queen mandibular pheromone (QMP) mix. Furthermore, we demonstrate that the two main QMP compounds 9-ODA and 9-HDA tested individually were as effective as the blend of all four major QMP compounds, suggesting considerable signal redundancy. Possible adaptive reasons for the observed complexity of the honeybee queen signal mix are discussed.



2018 ◽  
Vol 28 (1) ◽  
pp. 99-111 ◽  
Author(s):  
K. C. Galang ◽  
J. R. Croft ◽  
G. J. Thompson ◽  
A. Percival-Smith


Apidologie ◽  
2018 ◽  
Vol 49 (3) ◽  
pp. 346-358 ◽  
Author(s):  
Ashton M. Trawinski ◽  
Susan E. Fahrbach


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Shihao Dong ◽  
Ping Wen ◽  
Qi Zhang ◽  
Xinyu Li ◽  
Ken Tan ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document