ovary activation
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 9)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Megan Leask ◽  
Mackenzie Lovegrove ◽  
Abigail Walker ◽  
Elizabeth Duncan ◽  
Peter Dearden

Abstract Background Conserved syntenic gene complexes are rare in Arthropods and likely only retained due to functional constraint. Numerous sHSPs have been identified in the genomes of insects, some of which are located clustered in close proximity. Previous phylogenetic analyses of these clustered sHSP have been limited to a small number of holometabolous insect species and have not determined the pattern of evolution of the clustered sHSP genes (sHSP-C) in insect or Arthropod lineages. Results Using eight genomes from representative insect orders and three non-insect arthropod genomes we have identified that a syntenic cluster of sHSPs (sHSP-C) is a hallmark of most Arthropod genomes. Using 11 genomes from Hymenopteran species our phylogenetic analyses have refined the evolution of the sHSP-C in Hymenoptera and found that the sHSP-C is order-specific with evidence of birth-and-death evolution in the hymenopteran lineage. Finally we have shown that the honeybee sHSP-C is co-ordinately expressed and is marked by genomic features, including H3K27me3 histone marks consistent with coordinate regulation, during honeybee ovary activation. Conclusions The syntenic sHSP-C is present in most insect genomes, and its conserved coordinate expression and regulation implies that it is an integral genomic component of environmental response in arthropods.


Author(s):  
Amanda Prato ◽  
Rafael C. da Silva ◽  
Diego S. Assis ◽  
Sidnei Mateus ◽  
Klaus Hartfelder ◽  
...  

Division of labor is one of the most striking features in the evolution of eusociality. Juvenile hormone (JH) mediates reproductive status and aggression among nestmates in primitively eusocial Hymenoptera (species without morphologically distinct castes). In highly social species it has apparently lost its gonadotropic role and primarily regulates the division of labor in the worker caste. Polybia occidentalis, a Neotropical swarm-founding wasp, is an ideal model to understand how JH levels mirror social context and reproductive opportunities because of the absence of a clear morphological caste dimorphism. In this study, we tested the hypothesis that JH influences division of labor, ovary activation and cuticular hydrocarbon profiles of workers. Our observations confirmed that JH analog (methoprene) and precocene affected the cuticular chemical profile associated with the age polyethism. Also, methoprene and precocene-I influenced differently ovarian activation of treated females (individuals treated with methoprene expressed more activated ovaries while precocene treatment did not have significant effect). These results suggest that different hormonal levels induce a differential expression in the cuticular chemical profiles associated with the workers’ age polyethism, which may be essential for keeping the social cohesion among workers throughout their lives in the colony. Furthermore, JH is likely to play a gonadotropic role in P. occidentalis. JH has apparently undergone certain modifications in social Hymenoptera, presenting multifaceted functions in different species.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250720
Author(s):  
Cintia Akemi Oi ◽  
Helena Mendes Ferreira ◽  
Rafael Carvalho da Silva ◽  
Andreas Bienstman ◽  
Fabio Santos do Nascimento ◽  
...  

In the highly eusocial wasp, Vespula vulgaris, queens produce honest signals to alert their subordinate workers of their fertility status, and therefore they are reproductively suppressed and help in the colony. The honesty of the queen signals is likely maintained due to hormonal regulation, which affects fertility and fertility cue expression. Here, we tested if hormonal pleiotropy could support the hypothesis that juvenile hormone controls fertility and fertility signaling in workers. In addition, we aimed to check oocyte size as a proxy of fertility. To do that, we treated V. vulgaris workers with synthetic versions of juvenile hormone (JH) analogue and a JH inhibitor, methoprene and precocene, respectively. We dissected the treated females to check ovary activation and analyzed their chemical profile. Our results showed that juvenile hormone has an influence on the abundance of fertility linked compounds produced by workers, and it also showed to increase oocyte size in workers. Our results corroborate the hypothesis that juvenile hormone controls fertility and fertility signaling in workers, whereby workers are unable to reproduce without alerting other colony members of their fertility. This provides supports the hypothesis that hormonal pleiotropy contributes to keeping the queen fertility signals honest.


2021 ◽  
Author(s):  
Megan Leask ◽  
Mackenzie Lovegrove ◽  
Abigail Walker ◽  
Elizabeth Duncan ◽  
Peter Dearden

Abstract Background Conserved syntenic gene complexes are rare in Arthropods and likely only retained due to functional constraint. Numerous sHSPs have been identified in the genomes of insects, some of which are located clustered in close proximity. Previous phylogenetic analyses of these clustered sHSP have been limited to a small number of holometabolous insect species and have not determined the pattern of evolution of the clustered sHSP genes (sHSP-C) in insect or Arthropod lineages. Results Using eight genomes from representative insect orders and three non-insect arthropod genomes we have identified that a syntenic cluster of sHSPs (sHSP-C) is a hallmark of most Arthropod genomes. Using 11 genomes from Hymenopteran species our phylogenetic analyses have refined the evolution of the sHSP-C in Hymenoptera and found that the sHSP-C is order-specific with evidence of birth-and-death evolution in the hymenopteran lineage. Finally we have shown that the honeybee sHSP-C is co-ordinately expressed and is marked by genomic features, including H3K27me3 histone marks consistent with coordinate regulation, during honeybee ovary activation. Conclusions The syntenic sHSP-C is present in most insect genomes, and its conserved coordinate expression and regulation implies that it is an integral genomic component of environmental response in arthropods.


2020 ◽  
Author(s):  
Francisco Garcia Bulle Bueno ◽  
Rosalyn Gloag ◽  
Tanya Latty ◽  
Isobel Ronai

ABSTRACTSocial insect reproduction is characterised by a division of labour. Typically, the queen is the sole reproductive female in the colony and the female workers are non-reproductive. However, in the majority of social insect species the workers are only facultatively sterile and remain capable of laying eggs under some conditions, such as when the queen dies. The Australian stingless bee Tetragonula carbonaria is noteworthy as workers never lay eggs, even if a colony loses its queen. Here we describe the reproductive anatomy of T. carbonaria workers (deactivated ovaries), virgin queens (semi-activated ovaries), and mated queens (activated ovaries). T. carbonaria mated queens have high-volume egg production compared to other female insects as each of their eight ovarioles (filaments of the ovary) produces approximately 40 eggs per day. We then conduct the first experimental test of absolute worker sterility in the social insects. Using a controlled microcolony environment, we investigate whether the reproductive capacity of adult workers can be rescued by manipulating the workers’ social environment (separating them from a queen) and diet (feeding them unrestricted highly nutritious honey bee royal jelly), both conditions which cause ovary activation in bee species where workers are facultatively sterile. The ovaries of T. carbonaria workers that are queenless and fed royal jelly remain non-functional, indicating they are irreversibly sterile and that ovary degeneration is fixed prior to adulthood. We suggest that T. carbonaria might have evolved absolute worker sterility because colonies under natural conditions are unlikely to ever be queenless.


Author(s):  
Sarah A Princen ◽  
Annette Van Oystaeyen ◽  
Clément Petit ◽  
Jelle S van Zweden ◽  
Tom Wenseleers

Abstract The evolutionary origin of queen pheromones (QPs), which regulate reproductive division of labor in insect societies, has been explained by two evolutionary scenarios: the sender-precursor hypothesis and the sensory exploitation hypothesis. These scenarios differ in terms of whether the signaling system was built on preadaptations on the part of either the sender queens or the receiver workers. While some social insect QPs—such as cuticular hydrocarbons—were likely derived from ancestral fertility cues and evolved according to the former theory, the honeybee’s queen mandibular pheromone (QMP) has been suggested to act directly on preexisting gene-regulatory networks linked with reproduction. This is evidenced by the fact that QMP has been shown to also inhibit ovary activation in fruit flies, thereby implying exploitation of conserved physiological pathways. To verify whether QMP has similar effects on more closely related eusocial species, we here tested for QMP cross-activity in the bumblebee Bombus terrestris. Interestingly, we found that the non-native QMP blend significantly inhibited egg laying in both worker and queen bumblebees and caused accompanying shifts in ovary activation. The native bumblebee QP pentacosane, by contrast, only inhibited the reproduction of the workers. Overall, these findings support the hypothesis that honeybee QMP likely evolved via a route of sensory exploitation. We argue that such exploitation could allow social insect queens to produce compounds that manipulate the workers to remain sterile, but that a major hurdle would be that the queens themselves would have to be immune to such compounds.


2019 ◽  
Author(s):  
Carlos Antônio Mendes Cardoso-Júnior ◽  
Benjamin P. Oldroyd ◽  
Isobel Ronai

AbstractSocial insects are notable for having two female castes that exhibit extreme differences in their reproductive capacity. The molecular basis of these differences is largely unknown. A protein that likely plays a key role in these differences is Vitellogenin (Vg), a powerful antioxidant and insulin-signalling regulator. Here we investigate how Royal Jelly (the major food of honeybee queens) and queen pheromone (a major regulator of worker fertility), affects the longevity and reproductive status of honey bee workers, the expression of Vg, its receptor VgR and associated regulatory proteins. We find that Vg is expressed in the ovaries of workers and that workers fed a queen diet of Royal Jelly have increased Vg expression in the ovaries. Surprisingly, we find that Vg expression is not associated with worker ovary activation. Our findings provide further support for the ‘reproductive ground plan hypothesis’ as Vg has acquired non-reproductive functions in honeybee workers.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4415
Author(s):  
Meagan A. Simons ◽  
Adam R. Smith

Social insect foragers may specialize on certain resource types. Specialization on pollen or nectar among honeybee foragers is hypothesized to result from associations between reproductive physiology and sensory tuning that evolved in ancestral solitary bees (the Reproductive Ground-Plan Hypothesis; RGPH). However, the two non-honeybee species studied showed no association between specialization and ovary activation. Here we investigate the bumblebeeB. impatiensbecause it has the most extensively studied pollen/nectar specialization of any bumblebee. We show that ovary size does not differ between pollen specialist, nectar specialist, and generalist foragers, contrary to the predictions of the RGPH. However, we also found mixed support for the second prediction of the RGPH, that sensory sensitivity, measured through proboscis extension response (PER), is greater among pollen foragers. We also found a correlation between foraging activity and ovary size, and foraging activity and relative nectar preference, but no correlation between ovary size and nectar preference. In one colony non-foragers had larger ovaries than foragers, supporting the reproductive conflict and work hypothesis, but in the other colony they did not.


Sign in / Sign up

Export Citation Format

Share Document