air sparging
Recently Published Documents


TOTAL DOCUMENTS

305
(FIVE YEARS 28)

H-INDEX

35
(FIVE YEARS 2)

2022 ◽  
Vol 9 ◽  
Author(s):  
Kai Wu ◽  
Zan Li ◽  
Zhibin Liu ◽  
Songyu Liu

This work provides a three-dimensional discrete element simulation (DEM) model to study the air sparging technology. The simulations have taken into account the multi-phases of bubble (gas) - fluid (water) - soil (solid) particles. Bubbles are treated as discrete individual particles, with buoyancy and drag forces applied to bubbles and soil particles. The trajectory of each discrete bubble particle can be tracked using the discrete element model. It is found that the diffusion of the whole bubble is inverted conical though the motion behavior of a single bubble particle is random. Furthermore, the distribution of the radius of influence (ROI) is not uniform. The bubbles become more concentrated as in the center of the inverted cone. The number of bubbles dissipated from the water surface is normally distributed. The DEM simulation is a novel approach to studying air sparging technology that can provide us a deeper insight into bubble migration at the microscopic level.


Author(s):  
Mayara Valdevite ◽  
Bianca W. Bertoni ◽  
Leonardo Biral ◽  
Eduardo J. Crevelin ◽  
Suzelei C. França ◽  
...  
Keyword(s):  

Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 681
Author(s):  
Aleksandar Jokić ◽  
Ivana Pajčin ◽  
Nataša Lukić ◽  
Vanja Vlajkov ◽  
Arpad Kiralj ◽  
...  

Production of highly efficient biomass-based microbial biopesticides significantly depends on downstream processing in terms of obtaining as high concentration of viable cells as possible. Microfiltration is one of the recommended operations for microbial biomass separation, but its main limitation is permeate flux decrease due to the membrane fouling. The effect of air sparging as a hydrodynamic technique for improvement of permeate flux during microfiltration of Bacillus velezensis cultivation broth was investigated. Modeling of the microfiltration was performed using the response surface methodology, while desirability function approach and genetic algorithm were applied for optimization, i.e., maximization of permeate flux and minimization of specific energy consumption. The results have revealed antagonistic relationship between the investigated dependent variables. The optimized values of superficial feed velocity and transmembrane pressure were close to the mean values of the investigated value ranges (0.68 bar and 0.96 m/s, respectively), while the optimized value of superficial air velocity had a more narrow distribution around 0.25 m/s. The results of this study have revealed a significant improvement of microfiltration performance by applying air sparging, thus this flux improvement method should be further investigated in downstream processing of different bacterial cultivation broths.


2021 ◽  
Vol 12 ◽  
Author(s):  
Christopher P. Kasanke ◽  
Michael D. Willis ◽  
Mary Beth Leigh

An extensive plume of the emerging contaminant sulfolane has been found emanating from a refinery in Interior Alaska, raising questions about the microbial potential for natural attenuation and bioremediation in this subarctic aquifer. Previously, an aerobic sulfolane-assimilating Rhodoferax sp. was identified from the aquifer using stable isotope probing. Here, we assessed the distribution of known sulfolane-assimilating bacteria throughout the contaminated subarctic aquifer using 16S-rRNA-amplicon analyses of ~100 samples collected from groundwater monitoring wells and two groundwater treatment systems. One treatment system was an in situ air sparging system where air was injected directly into the aquifer. The other was an ex situ granular activated carbon (GAC) filtration system for the treatment of private well water. We found that the sulfolane-assimilating Rhodoferax sp. was present throughout the aquifer but was significantly more abundant in groundwater associated with the air sparge system. The reduction of sulfolane concentrations combined with the apparent enrichment of sulfolane degraders in the air sparging zone suggests that the addition of oxygen facilitated sulfolane biodegradation. To investigate other environmental controls on Rhodoferax populations, we also examined correlations between groundwater geochemical parameters and the relative abundance of the Rhodoferax sp. and found only manganese to be significantly positively correlated. The sulfolane-assimilating Rhodoferax sp. was not a major component of the GAC filtration system, suggesting that biodegradation is not an important contributor to sulfolane removal in these systems. We conclude that air sparging is a promising approach for enhancing the abundance and activity of aerobic sulfolane-degraders like Rhodoferax to locally stimulate sulfolane biodegradation in situ.


Author(s):  
Borja Ferrández-Gómez ◽  
Antonio Sánchez ◽  
Juana D. Jordá ◽  
Eva S. Fonfría ◽  
César Bordehore ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document