bcc phase
Recently Published Documents


TOTAL DOCUMENTS

301
(FIVE YEARS 67)

H-INDEX

32
(FIVE YEARS 5)

Calphad ◽  
2022 ◽  
Vol 76 ◽  
pp. 102392
Author(s):  
Zixuan Deng ◽  
Kai Xu ◽  
Yueyan Tian ◽  
Ming Lou ◽  
Renhao Xue ◽  
...  

2022 ◽  
Vol 119 (2) ◽  
pp. e2113059119
Author(s):  
Yang Sun ◽  
Feng Zhang ◽  
Mikhail I. Mendelev ◽  
Renata M. Wentzcovitch ◽  
Kai-Ming Ho

The Earth's inner core started forming when molten iron cooled below the melting point. However, the nucleation mechanism, which is a necessary step of crystallization, has not been well understood. Recent studies have found that it requires an unrealistic degree of undercooling to nucleate the stable, hexagonal, close-packed (hcp) phase of iron that is unlikely to be reached under core conditions and age. This contradiction is referred to as the inner core nucleation paradox. Using a persistent embryo method and molecular dynamics simulations, we demonstrate that the metastable, body-centered, cubic (bcc) phase of iron has a much higher nucleation rate than does the hcp phase under inner core conditions. Thus, the bcc nucleation is likely to be the first step of inner core formation, instead of direct nucleation of the hcp phase. This mechanism reduces the required undercooling of iron nucleation, which provides a key factor in solving the inner core nucleation paradox. The two-step nucleation scenario of the inner core also opens an avenue for understanding the structure and anisotropy of the present inner core.


Author(s):  
Zhiyong Jian ◽  
Yangchun Chen ◽  
Shifang xiao ◽  
Liang Wang ◽  
Xiaofan Li ◽  
...  

Abstract We have investigated the shock-induced plasticity and phase transition in the hexagonal columnar nanocrystalline (HCN) Mg by large-scale nonequilibrium molecular dynamics simulations (NEMD). The preexisting grain boundaries (GBs) induce the nucleation of the {10-12} twins for the local stress relaxation. The twins grow up in grains leading to the orientation rotation. The phase transition from the hexagonal close-packed (HCP) phase to the body-centered cubic (BCC) phase begins when the migrating twin grain boundaries (TGBs) meet in A- and C-type grains, and continues in the plastic deformation regions. The phase-transition pathway involves two steps: the reorientation and phase transformation.


2021 ◽  
Vol 55 (6) ◽  
Author(s):  
Mingxing Ma ◽  
Liang Zhao ◽  
Zhi-xin Wang ◽  
Shang-zhi Li ◽  
Chen Dong

CoCuNiTi high-entropy alloy coatings with an equal molar ratio were prepared on 45 steel substrates using the laser-cladding method. The effect of CeO2 doping on phase structure, microstructure and corrosion behavior of CoCuNiTi coatings were investigated by X-ray diffraction, optical microscope, scanning electron microscope, and electrochemical workstation. The results show that the phase structure of CoCuNiTi coating doped with 1 w/% CeO2 is transformed from the original dual-phase structure of FCC main phase and BCC phase to the dual-phase structure of BCC main phase and FCC phase, mainly because CeO2 addition helps to improve the temperature gradient and solidification rate during solidification, reduce the nucleation resistance and the diffusion distance of the alloying elements, and provide a liquid environment with longer time, lower viscosity and higher diffusion rate. The microstructure of the two coatings is composed of BCC-phase dendrite and FCC-phase interdendrite. The widths of the primary dendrites of the columnar dendrites in CoCuNiTi cladding layer before and after CeO2 doping are about 8.10 µm and 6.51 µm, respectively. The CoCuNiTi coating doped with 1 w/% CeO2 has the smallest corrosion current density, the largest capacitive reactance arc radius and polarization resistance, and the best corrosion resistance in 3.5 w/% NaCl solution, which is mainly due to making the alloy structure refined and the element distribution uniform after the CeO2 addition.


2021 ◽  
pp. 1-13
Author(s):  
Joseph R. Michael ◽  
Lucille A. Giannuzzi ◽  
M. Grace Burke ◽  
Xiang Li Zhong

The transformation of unstable austenite to ferrite or α′ martensite as a result of exposure to Xe+ or Ga+ ions at room temperature was studied in a 304 stainless steel casting alloy. Controlled Xe+ and Ga+ ion beam exposures of the 304 were carried out at a variety of beam/sample geometries. It was found that both Ga+ and Xe+ ion irradiation resulted in the transformation of the austenite to either ferrite or α′ martensite. In this paper, we will refer to the transformation product as a BCC phase. The crystallographic orientation of the transformed area was controlled by the orientation of the austenite grain and was consistent with either the Nishiyama–Wasserman or the Kurdjumov–Sachs orientation relationships. On the basis of the Xe+ and Ga+ ion beam exposures, the transformation is not controlled by the chemical stabilization of the BCC phase by the ion species, but is a result of the disorder caused by the ion-induced recoil motion and subsequent return of the disordered region to a more energetically favorable phase.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1907
Author(s):  
Jiaming Li ◽  
Jianliang Zuo ◽  
Hongya Yu

The microstructure, phase formation, thermal stability and soft magnetic properties of melt-spun high entropy alloys (HEAs) Fe27Co27Ni27Si10−xB9Lax with various La substitutions for Si (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) were investigated in this work. The Fe27Co27Ni27Si10−xB9La0.6 alloy shows superior soft magnetic properties with low coercivity Hc of ~7.1 A/m and high saturation magnetization Bs of 1.07 T. The content of La has an important effect on the primary crystallization temperature (Tx1) and the secondary crystallization temperature (Tx2) of the alloys. After annealing at relatively low temperature, the saturation magnetization of the alloy increases and the microstructure with a small amount of body-centered cubic (BCC) phase embedded in amorphous matrix is observed. Increasing the annealing temperature reduces the magnetization due to the transformation of BCC phase into face-centered cubic (FCC) phase.


Author(s):  
Abhishek Kumar Thakur ◽  
Rajendra Prasad Gorrey ◽  
Vikas Jindal ◽  
Krishna Muralidharan

Abstract The cluster variation method (CVM) is one of the thermodynamic models used to calculate phase diagrams considering short range order (SRO). This method predicts the SRO values through internal variables referred to as correlation functions (CFs), accurately up to the cluster chosen in modeling the system. Determination of these CFs at each thermodynamic state of the system requires solving a set of nonlinear equations using numerical methods. In this communication, a neural network model is proposed to predict the values of the CFs. This network is trained for the BCC phase under tetrahedron approximation for both ordering and phase separating systems. The results show that the network can predict the values of the CFs accurately and thereby Helmholtz energy and the phase diagram with significantly less computational burden than that of conventional methods used.


2021 ◽  
Vol 2052 (1) ◽  
pp. 012049
Author(s):  
A L Udovsky ◽  
M V Kupavtsev

Abstract In this work, the super-cells were used for quantum mechanical calculations of the mixing enthalpia of the BCC phase of the Fe-V system for the ground state. The values of total energy were calculated using 16 -th and 54- atomic super-cells for both clean components and alloys. The mixing enthalpy (ΔH) for the BCC phase was calculated on four 16- and 54- atomic super-cells in the vicinity of pure components, on the basis of which the dependence of the concentration ΔH for BCC alloys in the ferromagnetic state of the Fe-V system of the ground state was built.


2021 ◽  
Vol 104 (14) ◽  
Author(s):  
M. T. Beason ◽  
B. J. Jensen ◽  
S. D. Crockett

Sign in / Sign up

Export Citation Format

Share Document