scholarly journals Nonlinear Varying-Network Magnetic Circuit Analysis of Consequent-Pole Permanent-Magnet Motor for Electric Vehicles

2021 ◽  
Vol 12 (4) ◽  
pp. 254
Author(s):  
Hui Wang ◽  
Kwok Tong Chau ◽  
Christopher H. T. Lee ◽  
C. C. Chan ◽  
Tengbo Yang

To conserve rare earth resources, consequent-pole permanent-magnet (CPPM) machine has been studied, which employs iron-pole to replace half PM poles. Meanwhile, to increase flux-weakening ability, hybrid excitation CPPM machine with three-dimensional (3-D) flux flow has been proposed. Considering finite element method (FEM) is time-consuming, for the analysis of the CPPM machine, this paper presents a nonlinear varying-network magnetic circuit (NVNMC), which can analytically calculate the corresponding electromagnetic performances. The key is to separate the model of CPPM machine into different elements reasonably; thus, the reluctances and magnetomotive force (MMF) sources in each element can be deduced. While taking into account magnetic saturation in the iron region, the proposed NVNMC method can accurately predict the 3-D magnetic field distribution, hence determining the corresponding back-electromotive force and electromagnetic power. Apart from providing fast calculation, this analytical method can provide physical insight on how to optimize the design parameters of this CPPM machine. Finally, the accuracy of the proposed model is verified by comparing the analytical results with the results obtained by using FEM. As a result, with so many desired attributes, this method can be employed for machine initial optimization to achieve higher power density.

2019 ◽  
Vol 7 (6) ◽  
pp. 187 ◽  
Author(s):  
Li ◽  
Hu ◽  
Song ◽  
Mao ◽  
Tian

Permanent magnet couplings (PMCs) are widely used in underwater propulsion because it can solve the deep-sea sealing problem effectively. In this paper, a new type of conical permanent magnet coupling (CPMC) is proposed, which is able to match the tail shape of the underwater vehicle and make full use of the tail space to increase pull-out torque capability. Based on the three-dimensional finite element method (3D-FEM), the electromagnetic characteristics of an initial model for CPMC are analyzed. In order to facilitate the design and optimization of CPMC, an equivalent three-dimensional (3D) analytical method for the pull-out torque calculation is presented, and its accuracy is verified by comparison with the 3D finite element results. Finally, the influence of design parameters such as half-cone angle, pole pair, pole arc coefficient and permanent magnet thickness on maximum pull-out torque and torque density of CPMC is analyzed, and a preliminary optimization model is obtained.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Raja Nor Firdaus ◽  
Norhisam Misron ◽  
Chockalingam Aravind Vaithilingam ◽  
Masami Nirei ◽  
Hiroyuki Wakiwaka

The paper presents the energy density improvement using magnetic circuit analysis of the interior permanent magnet motor. The leakage flux from the conventional structure is improved with modified magnetic circuit to improve the energy and thereby the torque value. This is approached with a double stator structure design. The proposed structure is investigated with two design variations, namely, the double stator with thin pole shoe and the double stator with thick pole shoe motors. Variations in the mechanical parameters of the all the developed models are analyzed through the finite element analysis tool. In all investigations the magnetic source is fixed in both the permanent magnet volume and coil magnetomotive force, respectively, as 400 mm3per each pole and 480 Ampere turns per pole. From the analysis the best fit magnetic structure based on the torque characteristics is derived and is fabricated for the same volume as that of the conventional structure for performance evaluations. It is found out that there is improvement on the motor constant square density for the proposed improved magnetic circuit through the best fit double stator with thick pole shoe by about 83.66% greater than that of the conventional structure.


2011 ◽  
Vol 317-319 ◽  
pp. 1088-1097 ◽  
Author(s):  
Wei Hai Chen ◽  
Liang Zhang ◽  
Fang Hong Guo ◽  
Jing Meng Liu

This paper presents the design and modeling of a permanent magnet spherical actuator which consists of a rotor with eight cylindrical permanent magnet (PM) poles and a stator with twenty-four air-core coils. Torque and dynamic model of this PM spherical actuator are formulated analytically. An optimal design procedure is proposed to achieve a high torque output, and significant design parameters of the actuator are discussed. As there is no effective method for three dimensional orientation measurement of the spherical actuator currently, a novel orientation measurement system is proposed. Finally, experimental works are carried out, and the experiment results demonstrate the effectiveness of the proposed orientation measurement system.


Author(s):  
Andrew Kenny ◽  
Alan Palazzolo

Abstract A magnetic circuit model for a homopolar magnetic bearing is presented. This model connects the fore and aft circumferential flux paths with axial flux paths through the rotor and back iron. The bias flux is provided by a circumferential permanent magnet in the back iron. Results for an analysis using the nonlinear Hyperco50 B-H curve are presented. These results are compared to the results of a three dimensional magnetostatic finite element analysis. The two analytical methods are in good agreement and show that the control flux in this type of bearing follows both circumferential and axial paths.


2021 ◽  
Vol 11 (6) ◽  
pp. 2505
Author(s):  
Hyun-Ju Lee ◽  
Dong-Shin Ko ◽  
Deog-Jae Hur

With the increasing proliferation of electric and hydrogen vehicles, noises to recognize the driving status at low speeds are legalized, so a virtual engine sound generator is required, and slimming is required for packaging it in vehicles. This study investigates an optimization method for improving the electromagnetic force performance and slimming of the magnetic circuit for the permanent magnet structure for the vertical magnetization of the actuator for the acoustic vehicle alerting system (AVAS) of a vehicle and the probabilistic optimization of manufacturing tolerance management. To investigate the impact of the design parameters of the magnetic circuit structure on the electromagnetic force performance and slimming, we performed an independent analysis based on a single variable and investigated the characteristic variations based on multiple variables using a full factorial design and derived a performance prediction regression model using the central composite design of response surface methodology, including the curvature effect, by adding a center point to verify and consider the nonlinear characteristics. Consequently, four effective design parameters were determined to analyze the electromagnetic force performance and slimming of the vertical magnetization structure of the AVAS actuator—permanent magnet thickness, magnetic force collecting plate thickness, yoke position, and yoke thickness. We then performed statistical analysis using Monte Carlo simulation and proposed an optimization management level of 3σ with excellent process capability as the design application tolerance that can occur in the manufacturing process of each design parameter, whereby the confidence level of electromagnetic force performance and slimming improved from 99.46% to 99.73% and 97.62% to 99.73%, respectively.


Author(s):  
Minghao Tai ◽  
Yulei Jiang ◽  
Long Chen ◽  
Yuchuan Zhu

The magnetization and demagnetization process of electrohydraulic servo valve with permanent magnet torque motor is the last manufacturing process of electrohydraulic servo valve before its service, which has a significant effect on the output characteristics and magnetic stability of both torque motor and electrohydraulic servo valve. However, the previous studies mainly focus on the static state of the magnetic circuit instead of the changes of the magnetic steel’s states while operating magnetization and demagnetization process of torque motor, which causes many issues such as the unpredictability and inaccuracy of magnetization and demagnetization process. In this paper, a set of theoretical models are proposed to describe this entire magnetization and demagnetization process more accurately aiming at this issue. Firstly, a detailed magnetic circuit mathematical model of permanent magnet torque motor before demagnetization is established according to two kinds of magnetic circuits. Secondly, different from the existing research, in this paper, taking the variety of internal reluctance and magnetomotive force of magnetic steel into consideration, an equivalent method is presented by dividing the B-H curve of the magnetization and demagnetization process into several segments. Finally, the finite element method is used to verify the accuracy of the proposed mathematical model. The research results show the proposed model can accurately calculate the magnetic flux density of magnetic steel at any time and even the air gap’s magnetic flux and the output torque after the magnetization and demagnetization process. This research can help to design the magnetization and demagnetization process such as demagnetizing current to make sure the toque motor meets the requirements, which has an important guiding significance to design and conduct the magnetization and demagnetization process of electrohydraulic servo valve with permanent magnet torque motor.


Author(s):  
Jun Zhu ◽  
Shuaihui Li ◽  
Xiangwei Guo ◽  
Huaichun Nan ◽  
Ming Yang

Purpose This paper aims to study the relationship between leakage flux coefficient and the coreless axial magnetic field permanent magnet synchronous generator (AFPMSG) size and obtain the expressions of leakage flux coefficient. Design/methodology/approach In this paper, a magnetic circuit model of coreless AFPMSG is proposed. Four kinds of leakage permeances of permanent magnet (PM) are considered, and the expression of no-load leakage flux coefficient is obtained. Solving the integral region of leakage permeances by generator size, which improves the accuracy of the solution. Findings Finite element method and magnetic circuit method are used to obtain the no-load leakage flux coefficient and its variation trend charts with the change of pole arc coefficient, air gap length and PM thickness. The average errors of the two methods are 2.835%, 0.84% and 1.347%, respectively. At the same time, the results of single-phase electromotive force obtained by magnetic circuit method, three dimensional finite element method and prototype experiments are 19.36 V, 18.82 V and 19.09 V, respectively. The results show that the magnetic circuit method is correct in calculating the no-load leakage flux coefficient. Originality/value The special structure of the coreless AFPMSG is considered in the presented equivalent magnetic circuit and equations, and the equations in this paper can be applied for leakage flux evaluating purposes and initial parameter selection of the coreless AFPMSG.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1337-1345
Author(s):  
Chuan Zhao ◽  
Feng Sun ◽  
Junjie Jin ◽  
Mingwei Bo ◽  
Fangchao Xu ◽  
...  

This paper proposes a computation method using the equivalent magnetic circuit to analyze the driving force for the non-contact permanent magnet linear drive system. In this device, the magnetic driving force is related to the rotation angle of driving wheels. The relationship is verified by finite element analysis and measuring experiments. The result of finite element simulation is in good agreement with the model established by the equivalent magnetic circuit. Then experiments of displacement control are carried out to test the dynamic characteristic of this system. The controller of the system adopts the combination control of displacement and angle. The results indicate that the system has good performance in steady-state error and response speed, while the maximum overshoot needs to be reduced.


Sign in / Sign up

Export Citation Format

Share Document