supplemental damping
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 8)

H-INDEX

18
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Massimo Latour ◽  
Gianvittorio Rizzano ◽  
Vincenzo Piluso

In this paper, the friction coefficient and the cyclic response of different interfaces for friction devices are investigated by means of experimental tests under displacement control. In particular, six interfaces have been tested: steel–steel, brass–steel, sprayed aluminum–steel and three different rubber based friction materials adopted, respectively, in automotive applications, electrical machines and applications requiring low wearing.Static and kinetic friction coefficients have been evaluated and the influence of the interface pressure has been analyzed. The variation of the sliding force during the cyclic loading history has been investigated by comparing also the response coming from the use of different washers: circular flat washers and cone shaped annular disc springs.The work is aimed at the investigation of friction materials to be applied within the connecting elements of beam-to-column joints according to the double split tee configuration with friction pads.


2021 ◽  
Vol 7 ◽  
Author(s):  
Dimitrios Kalliontzis ◽  
Maryam Nazari

Over the past two decades, precast concrete members have been utilized in seismically resilient structures. In developing these structures, different techniques have been used for connecting the precast members to the foundation. In building construction, unbonded post-tensioning (PT) tendons can anchor a precast wall to the foundation, resulting in the so-called rocking wall system. The rocking wall system develops a dry connection with the foundation and provides moment resistance by means of the PT tendons. The PT tendons remain elastic when the wall is subjected to design-level ground motions to preserve the re-centering capability of the wall. Moreover, the structural damage is concentrated near the wall toes and can be minimized with proper detailing of the toes. Rocking wall systems can consist of a Single precast Rocking Wall (SRW), which uses no supplemental damping, or walls with supplemental damping in the form of viscous or hysteretic energy dissipating devices. In addition to the supplemental damping, rocking walls dissipate the seismic energy through their impacts on the foundation base, their inherent viscous damping, and the hysteresis of concrete near the wall base. While the investigation of rocking walls continues to gain interest, there is no widely accepted means of modeling their dynamic behavior. This paper investigates two popular approaches for modeling rocking walls with and without supplemental damping: the finite element method and analytical modeling. The ability of the two approaches to capture the local and global responses of the walls is evaluated against shake table tests of walls with multiple-level intensity base motions. Next, the behavior characteristics of the two modeling approaches and their ability to simulate impact damping are discussed.


2020 ◽  
Vol 36 (1) ◽  
pp. 322-352
Author(s):  
Gabriele Granello ◽  
Marco Broccardo ◽  
Alessandro Palermo ◽  
Stefano Pampanin

Since 2010, the construction of post-tensioned wooden buildings (Pres-Lam) has been growing rapidly worldwide. Pres-Lam technology combines unbonded post-tensioning tendons and supplemental damping devices to provide moment capacity to beam–column, wall–foundation, or column–foundation connections. In low seismic areas, designers may choose not to provide additional damping, relying only on the post-tensioning contribution. However, post-tensioning decreases over time due to creep phenomena arising in compressed timber members. As a consequence, there is a reduction of the clamping forces between the elements. This reduction affects the seismic response of Pres-Lam buildings in the case of low- and high-intensity earthquakes. Therefore, understanding and accounting for the post-tensioning losses and their uncertainty are paramount for a robust assessment of the safety of Pres-Lam constructions. So far, however, there have been no comprehensive studies which tackle the overall seismic performance of such systems in the presence of time-varying post-tension losses and the associated uncertainty. This study tackles this research gap by introducing a comprehensive seismic evaluation of Pres-Lam systems based on time-dependent fragility curves. The proposed fragility analysis is specifically designed to account systematically for time-varying post-tension losses and the related uncertainty. The method is applied to two case studies, designed, respectively, with and without supplemental damping devices. In terms of structural performance, results show that the use of additional dissipaters mitigates the effect of post-tensioning loss for earthquakes of high intensity. Conversely, performance under low-intensity earthquakes is strongly dependent on the post-tensioning value, as the reduction of stiffness due to the anticipated rocking motion activation would lead to damage to non-structural elements.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Geoffrey W. Rodgers ◽  
J. Geoffrey Chase ◽  
John B. Mander

Recent research on supplemental damping enabling low to no damage structures has led to new devices, such as lead-extrusion-based high force-to-volume (HF2V) devices. They provide significant energy dissipation and force capacity in a small volume, enabling a range of novel low to no damage connections and systems. However, despite several research study tests and a limited range of velocity testing, they have never been tested across a realistic velocity range or for robustness to manufacture and design across several devices. These issues are hurdles that limit professional design uptake and add uncertainty and risk to their use in design. To address them, a serious damage-free dissipation device characterise its force capacity and variability due to manufacture (repeatable quasistatic force) and velocity input (peak force to connections). These outcomes are critical to size all the connections and foundations for the resultant demands and ensure robust, effective design. This manuscript presents the quasistatic testing of 96 devices designed for the same quasistatic force capacity, as well as high-speed prototype testing at velocities up to 200 mm/sec. Quasistatic tests show device forces vary with standard deviation,σ< 6.2% of design and average force. Peak input velocities of ∼200 mm/s produced peak resistive forces of ∼350 kN and increasingly weak velocity dependence as device input velocity increased, which is an advantage as it limits large demand forces to connecting elements and surrounding structure if larger than expected response velocities occur. Overall, the devices show stable hysteretic performance, with slight force reduction during high-speed testing due to heat build-up and softening of the lead working material. This testing quantified important HF2V device dynamics and robustness for designers and is an important step towards design uptake.


2018 ◽  
Vol 39 (3) ◽  
pp. 749-760 ◽  
Author(s):  
Zhi-Hao Wang ◽  
Hui Gao ◽  
Bu-qiao Fan ◽  
Zheng-Qing Chen

It has been theoretically predicted that superior supplemental damping can be generated for a taut cable with an inertial mass damper. This paper extends previous studies to investigate the effect of the cable sag on the efficiency of an inertial mass damper. The general dynamic characteristics of an inclined sag cable with an inertial mass damper installed close to the cable end are theoretically investigated. The parametric analysis of the inertial mass and the damping coefficient of the inertial mass damper are conducted to evaluate the control performance of the cable with different sags. The results show that the inertial mass damper can alleviate the negative effect induced by the cable sag, and the cable sag can even increase modal damping ratios provided by the inertial mass damper. Sags of stay cables used in actual bridges only affect nearly symmetric vibrations of cables, while having little impact on nearly antisymmetric vibrations. The effect of cable sags will reduce the optimal damping coefficient and inertial mass of the inertial mass damper for the first symmetric mode of the cable.


Sign in / Sign up

Export Citation Format

Share Document