dna cloning
Recently Published Documents


TOTAL DOCUMENTS

268
(FIVE YEARS 12)

H-INDEX

45
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Kathleen A Christie ◽  
Jimmy A Guo ◽  
Rachel A Silverstein ◽  
Roman M Doll ◽  
Megumu Mabuchi ◽  
...  

While restriction enzymes (REs) remain the gold-standard for manipulating DNA in vitro, they have notable drawbacks including a dependence on short binding motifs that constrain their ability to cleave DNA substrates. Here we overcome limitations of REs by developing an optimized molecular workflow that leverages the PAMless nature of a CRISPR-Cas enzyme named SpRY to cleave DNA at practically any sequence. Using SpRY for DNA digests (SpRYgests), we establish a method that permits the efficient cleavage of DNA substrates at any base pair. We demonstrate the effectiveness of SpRYgests using more than 130 gRNAs, illustrating the versatility of this approach to improve the precision of and simplify several cloning workflows, including those not possible with REs. We also optimize a rapid and simple one-pot gRNA synthesis protocol, which reduces cost and makes the overall SpRYgest workflow comparable to that of RE digests. Together, SpRYgests are straightforward to implement and can be utilized to improve a variety of DNA engineering applications.


‘Molecular and medical genetics’ firstly covers the principles of molecular genetics, including gene structure, gene expression, and how mutations affect the encoded protein sequence. The key mechanisms of gene expression are described, including regulation and RNA transcription, processing, and translation. The organization of the genome is described, followed by the techniques of DNA cloning and sequencing. The second part of the chapter on medical genetics covers the principles of population genetics and genetic diseases, their treatment, and the integration of knowledge of genetic information into pharmacological interventions (pharmacogenetics and pharmacogenomics).


2019 ◽  
Vol 85 (16) ◽  
Author(s):  
Céline Aubry ◽  
Jean-Luc Pernodet ◽  
Sylvie Lautru

ABSTRACT With the development of synthetic biology in the field of (actinobacterial) specialized metabolism, new tools are needed for the design or refactoring of biosynthetic gene clusters. If libraries of synthetic parts (such as promoters or ribosome binding sites) and DNA cloning methods have been developed, to our knowledge, not many vectors designed for the flexible cloning of biosynthetic gene clusters have been constructed. We report here the construction of a set of 12 standardized and modular vectors designed to afford the construction or the refactoring of biosynthetic gene clusters in Streptomyces species, using a large panel of cloning methods. Three different resistance cassettes and four orthogonal integration systems are proposed. In addition, FLP recombination target sites were incorporated to allow the recycling of antibiotic markers and to limit the risks of unwanted homologous recombination in Streptomyces strains when several vectors are used. The functionality and proper integration of the vectors in three commonly used Streptomyces strains, as well as the functionality of the Flp-catalyzed excision, were all confirmed. To illustrate some possible uses of our vectors, we refactored the albonoursin gene cluster from Streptomyces noursei using the BioBrick assembly method. We also used the seamless ligase chain reaction cloning method to assemble a transcription unit in one of the vectors and genetically complement a mutant strain. IMPORTANCE One of the strategies employed today to obtain new bioactive molecules with potential applications for human health (for example, antimicrobial or anticancer agents) is synthetic biology. Synthetic biology is used to biosynthesize new unnatural specialized metabolites or to force the expression of otherwise silent natural biosynthetic gene clusters. To assist the development of synthetic biology in the field of specialized metabolism, we constructed and are offering to the community a set of vectors that were intended to facilitate DNA assembly and integration in actinobacterial chromosomes. These vectors are compatible with various DNA cloning and assembling methods. They are standardized and modular, allowing the easy exchange of a module by another one of the same nature. Although designed for the assembly or the refactoring of specialized metabolite gene clusters, they have a broader potential utility, for example, for protein production or genetic complementation.


Sign in / Sign up

Export Citation Format

Share Document