hydrolysis probe
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 9)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 156 (Supplement_1) ◽  
pp. S139-S139
Author(s):  
J C Lownik ◽  
J S Farrar ◽  
G Way ◽  
R K Martin

Abstract Introduction/Objective Since the start of the coronavirus disease 2019 (COVID-19) pandemic, molecular diagnostic testing for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has faced substantial supply chain shortages and noteworthy delays in result reporting after sample collection. Supply chain shortages have been most evident in reagents for RNA extraction and rapid diagnostic testing. In this study, we explored the kinetic limitations of extraction-free rapid cycle RT-qPCR for SARS-CoV-2 virus detection using the commercially available capillary based LightCycler. Methods/Case Report We optimized reverse transcription and PCR under extraction-free and rapid thermocycling conditions utilizing hydrolysis probe-based detection methods using a Roche LightCycler. Results (if a Case Study enter NA) This protocol improves detection speed while maintaining the sensitivity and specificity of hydrolysis probe-based detection. Percentage agreement between the developed assay and previously tested positive patient samples was 97.6% (n= 40/41) and negative patient samples was 100% (40/40). We further demonstrate that using purified RNA, SARS-CoV-2 testing using extreme RT-PCR and product verification by melting can be completed in less than 3 minutes. Conclusion We developed a protocol for sensitive and specific RT-qPCR of SARS-CoV-2 RNA from nasopharyngeal swabs in less than 20 minutes, with minimal hands-on time requirements. Overall, these studies provide a framework for increasing the speed of SARS-CoV-2 and other infectious disease testing.


Plant Disease ◽  
2021 ◽  
Author(s):  
Nicholas LeBlanc ◽  
Frank Martin ◽  
Vanina Castroagudin ◽  
Jo Anne Crouch

Impatiens downy mildew (IDM) disease is a primary constraint on the production of Impatiens walleriana, a popular and economically important floriculture plant. IDM is caused by the biotrophic oomycete Plasmopara destructor that emerged as a pathogen of I. walleriana in the 2000s. To enable P. destructor detection and quantification, a hydrolysis probe-based quantitative PCR diagnostic assay was developed based on unique orientation and order of the mitochondrial cytochrome c oxidase subunit 1 (cox1) and ATP synthase subunit alpha (atp1) genes in the genus Plasmopara. Nucleotide sequences and analysis of the cox1/atp1 region distinguished P. destructor and its sister-species P. obducens, consistent with prior phylogenetic analyses using cox2 and rDNA markers. Specificity for P. destructor was incorporated into a hydrolysis probe targeting the cox1 gene and flanking primers that amplified across the cox1/atp1 intergenic region. The limit of detection was 0.5 fg/μL of P. destructor DNA (~100 plasmid copies/µL), with amplification efficiency = 0.95. The assay was validated against a panel of target and non-target oomycetes, which showed that the primers were specific for Plasmopara spp., while the probe was specific for P. destructor infecting both I. walleriana and I. balsamina. Testing of Impatiens tissue collected from 23 locations across 13 states indicated all samples with IDM symptoms tested positive for P. destructor. Asymptomatic plants from two locations also tested positive for P. destructor.


Author(s):  
Jeevitha Shanmughanandhan ◽  
Dhivya Shanmughanandhan ◽  
Subramanyam Ragupathy ◽  
Thomas A Henry ◽  
Steven G Newmaster

Abstract BACKGROUND Actaea racemosa (Black cohosh) herbal dietary supplements are commonly used to treat menopausal symptoms in women. However, there is a considerable risk of contamination of A. racemosa herbal products in the natural health product (NHP) industry, impacting potential efficacy. Authentication of A. racemosa products is challenging because of the standard, multi-part analytical chemistry methods that may be too costly and not appropriate for both raw and finished products. OBJECTIVE In this paper, we discuss about developing and validating quick alternative biotechnology methods to authenticate A. racemosa herbal dietary supplements, based on the use of a species-specific hydrolysis PCR probe assay. METHODS A qPCR based species-specific hydrolysis probe assay was designed, validated, and optimized for precisely identifying the species of interest using the following analytical validation criteria: (1) specificity (accuracy) in determining the target species ingredient, while not identifying other non-target species, (2) sensitivity in detecting the smallest amount of the target material, and (3) reliability (repeatability and reproducibility) in detecting the target species in raw materials on a real-time PCR platform. RESULTS The results show that the species-specific hydrolysis probe assay was successfully developed for the raw materials and powders of A. racemosa. The specificity of the test was 100% to the target species. The efficiency of the assay was observed to be 99%, and the reliability of the assay was 100% for the raw/starting and powder materials. CONCLUSION The method developed in this study can be used to authenticate and perform qualitative analysis of A. racemosa supplements.


Author(s):  
Hadis Jafarian ◽  
Hossein Khodadadi ◽  
Parisa Badiee

Background and Purpose: Candida auris is an emerging multidrug-resistant pathogen. The identification of this species with the conventional phenotypic or biochemical mycological methods may lead to misidentification. Molecular-based species-specific identification methods such as quantitative real-time polymerase chain reaction (qPCR) facilitate a more reliable identification of C. auris than mycological methods. Regarding this, the present study aimed to develop a hydrolysis probe-based qPCR assay for the rapid, accurate identification of C. auris. Materials and Methods: The internal transcribed spacer 2 regions in the nuclear ribosomal DNA of C. auris and other related yeasts were assayed to find a specific PCR target for C. auris. A 123-base-pair target was selected, and primers and a probe were designed for hydrolysis probe-based real-time PCR with TaqMan chemistry. Ten-fold serial dilutions of C. auris ranging from 106 to 100 CFU/mL were prepared to establish a standard curve to quantify the yeast. Results: The qPCR assay was able to identify and quantify C. auris with a detection limit of 1 C. auris CFU per reaction. Specificity was confirmed by the non-amplification of the sequences belonging to other Candida species, yeasts, molds, bacteria, or human DNAs. The standard curve of the assay showed a highly significant linearity between threshold values and dilution rates (R2=0.99; slope=−3.42). Conclusion: The applied qPCR assay facilitated the rapid and accurate identification and quantification of emerging opportunistic C. auris. Therefore, considering the promising test validation results, we succeeded to develop a rapid and accurate hydrolysis probe-based qPCR assay for the screening and identification of C. auris.


2019 ◽  
Vol 102 (6) ◽  
pp. 1779-1786 ◽  
Author(s):  
Shanmughanandhan Dhivya ◽  
Subramanyam Ragupathy ◽  
Prasad Kesanakurti ◽  
Shanmughanandhan Jeevitha ◽  
Isabella Della Noce ◽  
...  

Abstract Background: There is considerable risk of adulteration of Ginkgo biloba herbal products in the natural health product (NHP) industry. Authentication of G. biloba products is challenging because of the standard, complex, analytical chemistry methods that may be too costly and not appropriate for both raw and finished products. Objective: We sought to develop and validate an alternative method to authenticate G. biloba herbal dietary supplements, based on the use of a species-specific hydrolysis PCR probe assay. Methods: A species-specific hydrolysis probe assay was developed, validated, and evaluated for the performance of the assay in accurately identifying the species of interest using the following analytical validation criteria: (1) specificity (accuracy) in identifying the target species ingredient, while not identifying other nontarget species, (2) sensitivity in detecting the smallest amount of the target material, and (3) reliability (repeatability and reproducibility) in detecting the target species in raw materials on a real-time PCR platform. Results: The species-specific hydrolysis probe assay was successfully developed for raw materials of G. biloba. The specificity of the assay was 100% to the target species. Efficiency of the assay was observed to be 99%, and the reliability of the assay was 100% for the raw/starting materials. Conclusions and Highlights: The method developed in this study is simple, rapid, and easy for supplement manufacturers to perform in their laboratories to ensure that their G. biloba supplements are authentic.


2019 ◽  
Vol 102 (6) ◽  
pp. 1779-1786 ◽  
Author(s):  
Shanmughanandhan Dhivya ◽  
Subramanyam Ragupathy ◽  
Prasad Kesanakurti ◽  
Shanmughanandhan Jeevitha ◽  
Isabella Della Noce ◽  
...  

Background: There is considerable risk of adulteration of Ginkgo biloba herbal products in the natural health product (NHP) industry. Authentication of G. biloba products is challenging because of the standard, complex, analytical chemistry methods that may be too costly and not appropriate for both raw and finished products. Objective: We sought to develop and validate an alternative method to authenticate G. biloba herbal dietary supplements, based on the use of a species-specific hydrolysis PCR probe assay. Methods: A species-specific hydrolysis probe assay was developed, validated, and evaluated for the performance of the assay in accurately identifying the species of interest using the following analytical validation criteria: (1) specificity (accuracy) in identifying the target species ingredient, while not identifying other nontarget species, (2) sensitivity in detecting the smallest amount of the target material, and (3) reliability (repeatability and reproducibility) in detecting the target species in raw materials on a real-time PCR platform. Results: The species-specific hydrolysis probe assay was successfully developed for raw materials of G. biloba. The specificity of the assay was 100% to the target species. Efficiency of the assay was observed to be 99%, and the reliability of the assay was 100% for the raw/starting materials. Conclusions and Highlights: The method developed in this study is simple, rapid, and easy for supplement manufacturers to perform in their laboratories to ensure that their G. biloba supplements are authentic.


2018 ◽  
Vol 255 ◽  
pp. 61-68 ◽  
Author(s):  
Raksha V. Bhoora ◽  
Ronel Pienaar ◽  
Frances Cornelius ◽  
Antoinette Josemans ◽  
Olivier Matthee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document