average cross section
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 0)

2020 ◽  
Vol 239 ◽  
pp. 03013
Author(s):  
Olivier Bouland

This paper comes back on the accuracy of the surrogate-reaction method (SRM) historically used for neutron-induced average partial cross sections inference from measured surrogate-reaction probabilities. The SRM level of performance is examined in relation to a reasonably accurate reference calculation performed with the 𝒜𝒱𝒳𝒮ℱ-ℒ𝒩𝒢 code [1] through a challenging test case : the 240Pu* compound system. This paper argues on some ingredients of the reference calculation [2] and returns some hints about the failure now well-known of the neutron-induced γ average cross section inference. It shows also that in some special cases, the SRM can be poorly accurate also in terms of neutron-induced fission average cross section inference.


2019 ◽  
Vol 5 (3) ◽  
pp. 263
Author(s):  
Adrian Pramudita Dharma ◽  
Bambang Suryoatmono

In order to use material efficiently, non-prismatic column sections are frequently employed. Tapered-web column cross-sections are commonly used, and design guides of such sections are available. In this study, various web-and-flange-tapered column sections were analysed numerically using finite element method to obtain each buckling load assuming the material as elastic-perfectly plastic material. For each non-prismatic column, the analysis was also performed assuming the column is prismatic using average cross-section with the same length and boundary conditions. Buckling load of the prismatic columns were obtained using equation provided by AISC 360-16. This study proposes a multiplier that can be applied to the buckling load of a prismatic column with an average cross-section to acquire the buckling load of the corresponding non-prismatic column. The multiplier proposed in this study depends on three variables, namely the depth tapered ratio, width tapered ratio, and slenderness ratio of the prismatic section. The equation that uses those three variables to obtain the multiplier is obtained using regression of the finite element results with a coefficient of determination of 0.96.


2012 ◽  
Vol 52 (11) ◽  
pp. 2763-2772
Author(s):  
D. Farley ◽  
Y. Zhou ◽  
A. Dasgupta ◽  
J.W.C. DeVries

Sign in / Sign up

Export Citation Format

Share Document